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A PRACTICAL FRAMEWORK FOR PORTFOLIO CHOICE
Richard O. Michaud a

Traditional portfolio optimality criteria often have serious theoretical or practical limita-
tions. A financial planning portfolio choice framework consisting of a resampled efficient
portfolio set and multiperiod geometric mean analysis is a practical alternative for many
situations of investment interest. While Monte Carlo financial planning is a more flexible
framework, geometric mean analysis may be less error prone, theoretically justifiable, and
convenient. Controversies that have limited applications of geometric mean analysis are
resolvable by improved understanding of distributional properties and rational decision-
making issues. The geometric mean is also useful in rationalizing a number of investment
paradoxes.

Optimal portfolio choice is the central problem of
equity portfolio management, financial planning,
and asset allocation. Portfolio optimality in prac-
tice is typically defined relative to a Markowitz
(1952, 1959) mean–variance (MV) efficient port-
folio set. Markowitz or classical efficiency is compu-
tationally efficient, theoretically rigorous, and has
widespread applicability. For example, Levy and
Markowitz (1979) show that MV efficient port-
folios are good approximations to portfolios that
maximize expected utility for many utility func-
tions and return generating processes of practical
interest.1 While there are many objections to MV
efficiency, most alternatives have no less serious
limitations.2

However, there are two main limitations of classi-
cal efficiency as a practical framework for optimal
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portfolio choice. (1) Classical efficiency is estima-
tion error insensitive and often exhibits poor out-of-
sample performance. (2) Some additional criterion
is required for portfolio choice from an efficient
set. The estimation error limitations of classical
efficiency and a proposed solution—the resampled
efficient frontier—are detailed in Michaud (1998).
The major focus of this report is to show that the dis-
tribution of the multiperiod geometric mean within
a financial planning context can be the framework of
choice for choosing among a properly defined effi-
cient portfolio set for many applications of interest
in investment practice.

A roadmap for the paper is as follows. A brief review
of classical versus resampled MV efficiency issues
for defining a practical efficient portfolio set is pro-
vided. Common optimality criteria, such as the
long-term geometric mean, utility function esti-
mation, and probability objectives, are shown to
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have significant theoretical or practical limitations.
A financial planning approach, which describes the
multiperiod consequences of single-period invest-
ment decisions as a framework for choosing among
efficient portfolios, avoids many of the limitations
of conventional and ad hoc optimality criteria. The
pros and cons of the two main financial planning
methods, Monte Carlo simulation and geometric
mean analysis, are presented. The geometric mean
distribution is also useful for resolving some out-
standing financial paradoxes and providing valuable
investment information in practice. The special case
of asset allocation for defined benefit pension plans
is presented. A brief summary of the results is given.

1 Classical versus resampled efficiency

Classical MV efficiency is estimation error insen-
sitive. Jobson and Korkie (1980, 1981) show that
biases in optimized portfolio weights may be very
large and that the out-of-sample performance of
classically optimized portfolios is generally very
poor. Simple strategies like equal weighting are
often remarkably superior to classical efficiency.3

In addition, classical efficiency is very unstable and
ambiguous; even small changes in inputs can lead to
large changes in optimized portfolio weights. Man-
agers typically find the procedure hard to manage
and often leading to unintuitive and unmarketable
portfolios. The limitations of MV efficiency in prac-
tice are essentially the consequence of portfolios that
are overly specific to input information. MV effi-
ciency assumes 100% certainty in the optimization
inputs, a condition never met in practice. Managers
do not have perfect forecast information and find it
difficult to use an optimization procedure that takes
their forecasts far too literally.

Resampled efficiency uses modern statistical
methods to control estimation error.4 Resampled
optimization is essentially a forecast certainty con-
ditional generalization of classical MV portfolio

efficiency.5 Statistically rigorous tests show that
resampled efficient portfolios dominate the per-
formance, on average, of associated classical effi-
cient portfolios. In addition, managers find that
resampled efficient portfolios are more investment
intuitive, easier to manage, more robust relative
to changes in the return generating process, and
require less trading. Since investors are never 100%
certain of their forecasts, there is never a good rea-
son for an investor to use classical over resampled
efficiency in practice. Unless otherwise stated, in
what follows we assume that the efficient portfolio
set is defined in terms of properly forecast certainty
conditioned, MV resampled efficient portfolios.6

2 Portfolio optimality criteria

A number of portfolio optimality criteria have been
proposed either based on the MV efficient set or
directly. The three most common in finance lit-
erature are probably utility function estimation,
short- and long-term probability objectives, and the
(long-term) geometric mean. All have important
theoretical or practical limitations. A brief review
of the limitations of utility function and probabil-
ity objective optimality criteria is provided because
the issues are largely well known in the investment
community. The misuses of the geometric mean
are explored in more depth not only because they
are less well known but also because the principles
involved apply to a number of ad hoc optimality
criteria in current investment usage.

2.1 Utility functions

Defining portfolio optimality in terms of the expec-
tation of a utility function is the traditional finance
textbook solution. Utility functions may have
widely varying risk-bearing characteristics. In this
approach, a utility function is chosen and its param-
eters estimated for a given investor or investment
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situation. The set of portfolio choices may or may
not be confined to portfolios on the efficient fron-
tier. The optimal portfolio is defined as the one with
maximum expected utility value.

An expected utility approach is generally not a
practical investment solution for optimal portfolio
choice. Investors do not know their utility function.
Also, utility function estimation is very unstable. It
is well known that choosing an appropriate util-
ity function even from a restricted family of utility
functions may be very difficult. In cases where a
family of utility functions differs only by the value
of a single parameter, even small differences of
the estimated parameter may lead to very differ-
ent risk-bearing characteristics (Rubinstein, 1973).
Multiple-period utility functions solved with a
dynamic programming or continuous-time algo-
rithm only compound the difficulties of utility
function estimation as a portfolio choice frame-
work. As a practical matter, investors have a very
difficult time explaining something as simple as why
they choose one risk level over another or why risk
preferences may change over time.

2.2 Short- and long-term return probabilities

The consequences of investment decisions over an
investment horizon are often described in terms of
the probability of meeting various short- and long-
term return objectives. For example, an investor
may wish to find a strategy that minimizes the prob-
ability of less than zero (geometric mean) return
over a 10-year investment horizon. Other mul-
tiperiod return objectives include maximizing a
positive real return or some other hurdle rate over
an investment horizon. Long-term return proba-
bilities may be approximated with the normal or
lognormal distribution to the geometric mean or
with Monte Carlo methods. The results are often
interesting and seductively appealing. However,
the tendency to define an optimal strategy based

on probability objectives, long- or short-term, has
serious limitations. Markowitz (1959, p. 297) notes
that return probability objectives may appear to
be conservative but are often dangerous and reck-
less. Return probability objectives are also subject to
Merton–Samuelson critiques, discussed below, and
cannot be recommended.

2.3 The long-term geometric mean criterion

The geometric mean or compound return over N
periods is defined as

GN (r) =
∏

(1 + ri)
1/N − 1, (1)

where r represents the vector of returns r1, r2, . . . , rN
in periods 1, . . . , N , and ri > −1. The usual
assumptions associated with the geometric mean are
that returns are measured independent of cash flows
and the return generating process is independent
and stationary over the investment horizon. The sta-
tionary distribution assumption is not always neces-
sary for deriving analytical results but is convenient
for many purposes.

The geometric mean is a summary statistic used
in finance to describe the return over multiple
equal duration discrete time intervals. Intuitively,
the geometric mean statistic describes the growth
rate of capital over the N -period investment hori-
zon. It is a widely used measure of historical
investment performance that is of interest to fund
managers, institutional trustees, financial advisors,
and sophisticated investors.

The geometric mean is usually introduced to stu-
dents with the following example: Suppose an
asset with a return of 100% in one period fol-
lowed by −50% in the second period. The average
return over the two periods is 25% but the actual
return is zero. This is because a dollar has increased
to two at the end of the first period and then
decreased to a dollar at the end of the second. The
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geometric mean formula (1) gives the correct return
value, 0%. It is the measure of choice for measur-
ing return over time. This example is pedagogically
useful; it is simple, straightforward, and, within
its context, correct. However, this example is easily
misunderstood.

As the number of periods in the investment horizon
grows large, the (almost sure) limit of the geometric
mean is the point distribution:

G∞(r) = eE ( log (1+r)) − 1. (2)

The point distribution limit (2) or long-term geo-
metric mean is also the limit of expected geometric
mean return. Formula (2) has been the source of
important errors in financial literature.

Properties of the (long-term) geometric mean have
fascinated many financial economists and have
often been proposed as an optimality criterion.7 For
example, the approximation for the long-term geo-
metric mean, expressed in terms of the mean, µ,
and variance, σ 2 of single-period return,

G∞(r) ≈ µ − σ 2

2
(3)

can be used to find the portfolio on the MV efficient
frontier that maximizes long-term return.8 Intu-
itively, such a portfolio has attractive investment
properties. Another optimality criterion motivated
by properties of the long-term geometric mean
is given in Hakansson (1971b). In this case, the
criterion for portfolio optimality is

Max E ( log (1 + r)). (4)

As Hakansson shows, maximization of (4) leads
to almost certain maximization of long-term geo-
metric mean return while optimal MV efficient
portfolios may lead to almost certain ruin.9 There
are important theoretical and practical objections
that have been raised of the Hakansson criterion (4)
and its near relative (3). The theoretical objections

are discussed in the next section. From a practical
point of view, the investment horizon is not infinite.
For finite N , the Hakansson optimal portfolio has a
variance that is often very risky. Hakansson optimal
portfolios may be near, at, or beyond the maxi-
mum expected return end of the efficient frontier.10

For many investors and institutions, the Hakans-
son proposal is often not a practical investment
objective.

2.4 Merton–Samuelson critique of the long-term
geometric mean criterion

Merton and Samuelson raised serious theoret-
ical objections to the proposals in Hakansson
(1971b).11 While there are a number of technical
details, the basic thrust of their objections consists
of the inadvisability of financial decision-making
motivated by statistical properties of objective func-
tions however intuitive or attractive. Financial
decision-making must be based on expected utility
maximization axioms. An objective function that is
not consistent with appropriate rationality axioms
leads to decisions that do not satisfy some basic
rationality principle. As importantly, no one util-
ity function is likely to be useful as a general theory
of portfolio choice for all rational investors.12

While addressed to Hakansson (1971b), the
Merton–Samuelson critiques are very general and
are applicable to many ad hoc optimality crite-
ria in current use in the investment community.13

It seems self evident that the notion of portfolio
optimality and investment decision-making must
necessarily rest on rationality principles similar to,
if not precisely, those of classical utility.14 We
assume Merton and Samuelson’s views throughout
our discussions.

3 Properties of the geometric mean distribution

If the number of periods is finite, the geometric
mean distribution has a mean and variance and
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possesses many interesting and useful properties for
finance and asset management. The following sim-
ple example may provide helpful guidance. Suppose
an asset with two equally probable outcomes in each
investment period: 100% or −50%. What is the
expected geometric mean return for investing in this
asset over the investment horizon? In general it is not
0%. A correct answer requires more information.

Suppose we plan to invest in this asset for only one
period. The expected return of the investment is
25% not 0%. Suppose you are considering investing
in the asset for two or three investment periods. The
expected geometric mean return is 12.5% over two
periods and 8.26% over three periods. For any finite
horizon, the investment has a variance as well as an
expected return. It is only at the limit, when the
number of investment periods is very large, that
the expected growth rate of investing in this asset
is 0%.15

An improved understanding of the properties of
the geometric mean return distribution is neces-
sary to address and resolve outstanding fallacies and
to properly apply it in practice.16 Four properties
of the geometric mean distribution with a focus on
financial implications are given below. The reader is
referred to Michaud (1981) for mathematical and
statistical proofs and more technical and rigorous
discussion.

3.1 Horizon dependence

The expected geometric mean is generally hori-
zon dependent and monotone decreasing (or non-
increasing) as the number of periods increases.17

The two-outcome example above illustrates the
monotone decreasing character of the expected geo-
metric mean and non-equality to the limit (2) when
the number of periods N is finite. It is an amaz-
ingly common error, repeated in many journal
papers, including finance and statistical texts, that
the expected geometric mean is equal to the almost

sure limit (2) for finite N . An important corollary
is that maximizing E ( log (1 + r)) is generally not
equivalent to maximizing the expected geometric
mean return when N is finite. The lognormal dis-
tribution is the exception where the equality and
maximization equivalence are correct.

An important consequence of this result is to high-
light the often-critical limitations of the lognormal
assumption for applications of geometric mean
analysis. While it is easy to show that empirical asset
return distributions are not normal, if only because
most return distributions in finance have limited
liability, it is just as easy to show that empirical
asset returns are not lognormal, if only because most
assets have a non-zero probability of default. Unless
empirical returns are exactly lognormal, important
properties of the geometric mean are ignored with
a lognormal assumption. In general, lognormal dis-
tribution approximations of the geometric mean are
not recommendable.18

A short digression on the related subject of con-
tinuously compounded return may be of interest.
A return of 20% over a discrete time period is equal
to the continuously compounded rate 18.23%.
Financial researchers and practitioners often use the
average of continuously compounded returns for
multiperiod analyses, usually explicitly or implicitly
with a lognormal distribution assumption. How-
ever, the lognormal distribution assumption is not
benign; it implies horizon independence and is not
consistent with most empirical returns in finance.
The average of continuously compounded returns
may be insufficient as a description of multiperiod
return and should be used with care.

3.2 The geometric mean normal distribution
approximation

It is well known that the geometric mean is asymp-
totically lognormally distributed.19 However, it is
also true that it can be approximated asymptotically
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by a normal distribution.20 This second result turns
out to have very useful applications. Asymptotic
normality implies that the mean and variance of
the geometric mean can be convenient for describ-
ing the geometric mean distribution in many cases
of practical interest. The normal distribution can
also be convenient for computing geometric mean
return probabilities for MV efficient portfolios.
A third important application is given in the next
section.

3.3 The expected geometric mean and median
terminal wealth

The medians of terminal wealth and of the geo-
metric mean, GM , are related according to the
formula

Median of terminal wealth = (1 + GM )N . (5)

Because of asymptotic normality, the expected geo-
metric mean is asymptotically equal to the median
and, consequently, the expected geometric mean is
a consistent and convenient estimate of median ter-
minal wealth via (5). Since the multiperiod terminal
wealth distribution is typically highly right-skewed,
the median of terminal wealth, rather than the
mean, represents the more practical investment
criterion for many institutional asset managers,
trustees of financial institutions, and sophisticated
investors.21 As a consequence, the expected geo-
metric mean is a useful and convenient tool for
understanding the multiperiod consequences of
single-period investment decisions on the median
of terminal wealth.

3.4 The MV of geometric mean return

A number of formulas are available for describing
the N -period mean and variance of the geometric
mean in terms of the single-period mean and vari-
ance of return.22 Such formulas do not typically

depend on the characteristics of a particular return
distribution and range from simple and less accurate
to more complex and more accurate.23 The sim-
plest but pedagogically most useful formulas, given
in terms of the portfolio single-period mean µ and
variance of return σ 2 are:

E (GN (r)) = µ − (1 − 1/N )σ 2

2
(6a)

V (GN (r)) = (1 + (1 − 1/N )σ 2/2)σ 2

N
(6b)

Formulas (6a) and (6b) provide a useful road map
for understanding the multiperiod consequences of
single-period efficient investment decisions. Note
that (6a) shows explicitly the horizon dependent
character of expected geometric mean return.

4 Financial planning and portfolio choice

Financial planning methods are widely used for
cash flow planning and portfolio choice in insti-
tutional consulting practice. Monte Carlo simula-
tion and geometric mean methods are commonly
associated with financial planning studies. Both
methods describe the short- and long-term invest-
ment risk and return and distribution of financial
consequences of investing in single-period efficient
portfolios. An appropriate risk level is chosen based
on visualization and assessment of the risk and
return tradeoffs in financial terms for various invest-
ment horizons. Applications include defined benefit
pension plan funding status and required contri-
butions, endowment fund spending policy and
fund status, investor retirement income, and col-
lege tuition trust funds. Such studies range from
simply examining multiperiod return distributions
and objectives to large-scale projects that include
specialist consultants.24 In this context, a low risk
investment may often be risky relative to a higher
risk alternative for meeting a specific financial goal.
Financial planning methods have often been useful
in identifying strategies or funding decisions that are
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Portfolio
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Figure 1 Financial planning framework.

likely to lead to insolvency or significant financial
distress.25

Figure 1 displays a standard framework for a finan-
cial planning study. The risk and return of a
candidate efficient portfolio is given, capital for
investment and inflation assumptions input, the
length of the investment horizon and draw down
period defined, and results displayed in various ways
as appropriate.

4.1 Monte Carlo financial planning

Monte Carlo simulation methods are widely used
for cash flow financial planning and what-if exer-
cises. Monte Carlo methods are characterized by
flexibility; virtually any cash flow computable out-
come, including accounting variables and actuarial
procedures, can be analyzed. Various legal and
tax events are readily modeled in a Monte Carlo
framework.

4.2 Geometric mean financial planning

The geometric mean distribution is also a flexible
financial planning tool. Straightforward applica-
tions include planning for future college tuition,
endowment and foundation asset allocation and
spending rules, and 401 K pension plan retire-
ment planning (Figure 2).26 The special case of
defined benefit pension plans is treated in a later
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Figure 2 Twenty-year annuity distribution.

section. Variations include allowing for contribu-
tions and/or withdrawals during the investment
period that may be constant or vary in value, defined
either as actual cash values or as percent of fund
value in each time period, in nominal or current
dollars. The draw down period can be defined
either in nominal or current dollars as annuities,
fund values, or spending levels. Varying cash flow
schedules in the contribution and draw down peri-
ods can be useful in addressing multiple objective
situations.27

Note that the Merton–Samuelson objections to the
geometric mean as an optimality criterion are not
operative in a financial planning context. As in
Monte Carlo simulation, the geometric mean is
simply used as a computation engine to estimate the
multiperiod consequences of single-period efficient
investment decisions. Properties of the geometric
mean also provide the mathematical foundation of
the Monte Carlo simulation financial planning pro-
cess, an important issue, which we discuss further
below.

4.3 Monte Carlo versus geometric mean financial
planning

The advantage of Monte Carlo simulation finan-
cial planning is its extreme flexibility. Monte
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8 RICHARD O. MICHAUD

Carlo simulation can include return distribution
assumptions and decision rules that vary by period
or are contingent on previous results or forecasts of
future events. However, path dependency is prone
to unrealistic or unreliable assumptions. In addi-
tion, Monte Carlo financial planning without an
analytical framework is a trial and error process for
finding satisfactory portfolios. Monte Carlo meth-
ods are also necessarily distribution specific, often
the lognormal distribution.28

Geometric mean analysis is an analytical frame-
work that is easier to understand, computationally
efficient, always convergent, statistically rigorous,
and less error prone. It also provides an analyti-
cal framework for Monte Carlo studies. An analyst
armed with geometric mean formulas will be able to
approximate the conclusions of many Monte Carlo
studies.

For many financial planning situations, geometric
mean analysis is the method of choice. A knowl-
edgeable advisor with suitable geometric mean
analysis software may be able to assess an appro-
priate risk level for an investor from an efficient set
in a regular office visit. However, in cases involving
reliably forecastable path-dependent conditions, or
for what-if planning exercises, supplementing geo-
metric mean analysis with Monte Carlo methods
may be required.29

5 Geometric mean applications to asset
management

Geometric mean properties have useful applications
for asset management in situations where invest-
ment risk in each period is relatively constant over
the investment horizon. This assumption is often
satisfied for institutional equity strategies and many
asset allocation applications and financial planning
situations.

5.1 The critical point and maximum growth rates

Assume that single-period portfolio efficiency is
monotone increasing in expected return as a
function of portfolio risk.30 Formula (6a) teaches
that N -period expected geometric mean return
might not be a monotone increasing function of
(single-period) efficient portfolio risk.31 In other
words, there may exist an interior “critical point”
on the single-period efficient frontier that has the
highest expected geometric mean return.32 This
critical point can be found analytically under cer-
tain conditions or computationally using a search
algorithm.33 Institutional asset managers may often
want to avoid efficient portfolios if they imply less
expected geometric mean return and median wealth
as well as more risk relative to others.34

Figure 3 provides an example of the expected geo-
metric mean as a function of single-period portfolio
risk associated with a single-period MV efficient
frontier. There are four curves. The top curve is
the MV efficient frontier. The three curves below
the efficient frontier display the expected geometric
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Figure 3 Efficient frontier expected geometric
mean return versus portfolio risk for 1-, 3-, 5-,
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mean as a function of single-period portfolio risk
for three investment horizons: 3, 5, and 10 years.35

Note that the expected geometric mean curves show
that a critical point exists ranging roughly from 17%
to 19% portfolio risk.

An interior efficient frontier critical point may
not exist (Michaud, 1981). The non-existence of
an interior point often means that the maximum
expected geometric mean return portfolio is at the
upper end point of the efficient frontier and all
single-period efficient portfolios can be described as
multiperiod MV geometric mean efficient.36 When
an interior critical point exists, it is generally horizon
dependent, with limit the efficient portfolio with
expected geometric mean return equal to the almost
sure limit (2). The geometric mean formulas and
critical point analysis can also be used to estimate an
upper bound for efficient portfolio growth rates in
capital markets under the assumptions.37 Investors
are well advised to know the multiperiod limita-
tions of risk prior to investment, particularly when
leveraged strategies are being used.

6 Resolving financial paradoxes with
geometric mean analysis

A good model for investment behavior typically
provides unexpected insight in totally different
contexts. In this regard, the geometric mean dis-
tribution is often useful in rationalizing investment
behavior and resolving paradoxes of financial man-
agement. Three examples are given below, which
have interest in their own right and demonstrate
the power and investment usefulness of geometric
mean analysis.

6.1 CAPM and the limits of high beta portfolios

The security market line of the capital asset pric-
ing model implies that expected return is linearly
related to systematic risk as measured by β. Taken

literally, the implication is that managers should
take as much β risk as they can bear. In practice,
many managers do not take much more than market
risk (β ≈ 1) and even high-risk active portfolios sel-
dom have a β larger than 3. Are asset managers not
acting in their own and their client’s best interests?

Michaud (1981) derives formulas for the critical
point for β under the security market line assump-
tion. The critical β for a market with expected
annual return of 10%, risk free rate of 5%, and stan-
dard deviation of 20% for an investment horizon
of 5 years is approximately 1.85. Longer hori-
zons or larger market standard deviations lead to
a smaller critical β. On the other hand, relatively
recent capital market history in the US has exhibited
historically low volatility and has been associated
with increased popularity of leveraged hedge fund
strategies. Lower market volatility, when persistent,
rationalizes the use of higher leveraged strategies.
In these and other situations, investment practice
often mirrors the rational implications of geometric
mean results.

6.2 Taxes and the benefits of diversified funds

Consider providing investment advice to an
investor who owns a one stock portfolio that has
performed well over a recent period. Typical finan-
cial advice is to sell the stock and buy a diversified
fund. This is because the one stock portfolio has a
great deal of undiversified risk. According to invest-
ment theory, diversifiable risk is not associated with
long-term return and should be largely avoided.

From the investor’s point of view, the advice may
often not be congenial. If the stock has a larger β

than the diversified fund, financial theory implies
higher expected return. Also, selling the stock will
certainly result in substantial capital gains taxes and
loss of portfolio value. So how can the diversi-
fied fund recommendation be rationalized? This
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situation is a problem encountered by financial
advisors many times in their career.

The benefits of the diversified fund are not gener-
ally justifiable from single-period investment theory
but often are from MV geometric mean analysis.
In this context, geometric mean analysis may lead
to the computation of a “crossover” point where
the diversified fund is expected to outperform, and
is consequently more investment attractive than,
the undiversified portfolio beyond some period
in the investment horizon. In many cases, the
crossover point can be surprisingly short and of
serious practical consideration.

Assume that the investor’s one stock portfolio has
a β = 2 and a market correlation of 0.5. Assume
a diversified market portfolio with expected annual
return of 10% and standard deviation of 20% and
a risk free rate of 5%. Assume a return generat-
ing process consistent with the security market line
of CAPM and that capital gains taxes reduce cap-
ital value by 25%. Figure 4 displays the expected
geometric mean return as a function of annual
investment periods over a 20-period investment
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Figure 4 Crossover return analysis risky asset,
diversified, diversified after-tax.

horizon for the undiversified, diversified, and diver-
sified after-tax portfolios. In the first period, the
top curve or undiversified fund has significantly
higher expected return than either the middle
curve (diversified fund) or bottom curve (diversi-
fied fund after-taxes). However, the exhibit shows
that, over time, the expected geometric means of
the diversified funds cross over and outperform the
undiversified fund. This is true even when the ini-
tial loss of capital due to taxes is factored into the
analysis. The diversified funds are likely to outper-
form the undiversified fund well within four years
even considering taxes.

This example dramatically shows the power of
diversification over time. It should also be noted
that the example is far from extreme. Many
high-performing one stock portfolios encountered
in financial planning and investment consulting
have β significantly in excess of 2. On the other
hand, a less volatile market environment than that
assumed may have significantly improved the per-
formance of the undiversified fund.38 While the
results depend on the assumptions, and a crossover
point need not exist, investment in diversified funds
is often well rationalized by multiperiod geometric
mean analysis in many cases of practical interest.39

6.3 Asset allocation strategies that lead to ruin40

Suppose an investor invests 50% of assets in risky
securities in each time period. Either the return
matches the investment or it is lost. Both events are
equally likely. This is a fair investment game similar
to an asset mix investment policy of equal allocation
to risky stocks and riskless bonds with rebalancing.
In this case, investment policy leads to ruin with
probability one. This is because the likely outcome
of every two periods results in 75% of original assets.
However, the investment is always fair in the sense
that the expected value of your wealth at the end
of each period is always what you began with. For
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two periods the expected geometric mean return is
negative and declines to the almost sure long-term
limit of −13.4%, which is found using (2).

This example vividly demonstrates the difference
between the expected and median terminal wealth
of an investment strategy. It shows that the expected
geometric mean return implications of an invest-
ment decision are often of significant interest.

7 The special case of defined benefit pension
plan asset allocation

Monte Carlo asset–liability simulation methods
are prevalent in investment-planning practice for
defined benefit pension funds. This is due to the
perception that the funding of actuarially estimated
liabilities and the management of actuarially esti-
mated plan contributions is the appropriate purpose
of invested assets. In this context, geometric mean
analysis appears to have limited portfolio choice
value. However, the traditional actuarial valuation
process typically ignores the dynamic character of
the economics of pension funding risk.41 These
same issues make Monte Carlo asset–liability simu-
lation studies for defined benefit pension plans often
irrelevant or misleading.

7.1 Economic nature of defined benefit
pension plans

Defining an appropriate and useful investment pol-
icy begins by understanding the true economic
nature of a pension plan. A pension plan is deferred
compensation. It is part of the total wage and
fringe benefit package associated with employee
compensation. Far from being a corporate liability
or drag on firm profitability, it is a US government
sponsored asset for promoting corporate competi-
tiveness. This is because pension contributions are
tax-advantaged. If the firm is to remain competitive

for human capital and total employee compensation
remains the same, pension plan termination leads
to greater, not less, corporate expense. Corporations
should prefer employee compensation in the form
of plan contributions than direct compensation.

While actuarial methods and assumptions are
designed to manage the cost of the pension plan
to the corporation, there are many economic forces
that are at work. If total employee compensation is
competitive relative to other firms, a more than nor-
mal percent of payroll plan contributions may only
mean that the firm has decided to tilt total compen-
sation towards deferred rather than current. If total
compensation is high relative to competing firms,
this may be part of a conscious firm policy of attract-
ing human capital. Alternatively, there are many
things the firm may want to do besides change their
asset allocation in order to manage plan contribu-
tions. For example, the benefit formula, employee
workforce, or level of current compensation can be
reduced, all of which has direct implications for
required contributions.

An appropriate asset allocation comes from an
understanding of the business risks of the firm and
its ability to grow and compete for human capi-
tal over time and has little, if anything, to do with
actuarial valuation.42 A contemporary example of
the dangers associated with asset allocations derived
from a conventional understanding of pension
liabilities is given in the next section.

7.2 A cautionary tale for pension fund asset
allocation

As an example, the economic and market climate in
the year 2001 has much to teach in terms of true eco-
nomic pension liability risks and appropriate asset
allocation. The year saw a dramatic decline in inter-
est rates leading to an increase in the present value
of actuarially estimated pension liabilities. At the
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same time equity values fell significantly leading to
a serious decline in the funding status of many US
pension plans. Were large allocations to equities a
terrible mistake? Should pension plans redirect their
assets to fixed income instruments to reduce their
funding risk in the future?

During this same period, due in part to declin-
ing equity values and associated economic condi-
tions, many corporations downsized their work-
force, froze salaries, reduced or eliminated bonuses,
and shelved many internal projects. All these fac-
tors impact workforce census, expected benefits,
and pension liabilities. Because the actuarial val-
uation process uses many non-economic long-term
smoothing assumptions, liability valuation is typi-
cally little influenced by changes in expected bene-
fits or the business risks of the firm.43 An updated
actuarial valuation with few smoothing assump-
tions, which more closely approximates financial
reality, is likely to find that many US corporations
had very diminished pension liabilities in this period
and may be far less underfunded. Financial reality
will eventually emerge from the actuarial valuation
process in the form of much reduced pension liabil-
ity, all other things being the same. This is because
promised benefits have to be paid whatever the
assumptions used to estimate them. An asset alloca-
tion based on actuarial valuation methods may often
have serious negative investment consequences on
plan funding when markets and economic produc-
tivity rebound and the value of non-fixed income
assets become more attractive.

7.3 Economic liabilities and asset-liability asset
allocation

It is beyond the scope of this report to describe
the economic risk characteristics of a defined ben-
efit pension plan or other institutional or per-
sonal liabilities and how they may be modeled.44

Asset–liability asset allocation problems require an

understanding of changes in economic factors and
capital market rates and their relationship to the
economic nature of liabilities or use of invested
assets.45 Actuarial methods often have limited and
even dangerous decision-making asset allocation
value.

The recommended alternative is to define the
resampled efficient set in a benchmark framework
relative to an economic model of liability risk.46

MV geometric mean analysis and Monte Carlo
simulation may then be used to derive the mul-
tiperiod financial planning implications of efficient
portfolios.

8 Conclusion

Geometric mean analysis is far more robust and
applicable to a far wider range of portfolio choice
applications than is widely perceived. It can ratio-
nalize much investor behavior while providing very
useful information for investors and financial advi-
sors for improving the value of invested assets. It
can avoid overly risky and leveraged investments
and strategies by providing investors with a real-
istic view of long-term capital growth rates. It is
also analytically and computationally very conve-
nient. Used properly, MV geometric mean analysis
is often fundamentally important for investment
consulting, financial planning, and asset manage-
ment. However, the appropriate definition of the
resampled efficient portfolio set remains paramount
in the investment value of any financial planning
procedure.

Appendix

Additional critical point issues

Formula (3) is a very standard approximation to
the expected geometric mean. It has a number
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of practical limitations that are shared with many
other approximations in widespread use. When N is
finite, the horizon dependence property illustrated
in (6a) shows that the portfolio that maximizes
formula (3) might not represent well the critical
point portfolio. Another issue is that neither (3) nor
(6a) may be sufficiently accurate approximations of
E (GN (r)) and the critical point when N is large.
A more accurate formula from Michaud (1981,
Appendix) of the long-term geometric mean return
in terms of the single-period mean and variance of
return, is

G∞(r) = (1 + µ)exp

{
−

[
σ 2

(2(1 + µ)2)

]}
− 1.

(7)
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Notes

1 Currently, there are serious controversies on the appropri-
ate framework for rational decision-making under uncer-
tainty for finance. The characteristics of investor gains and
loss behavior have raised valid objections concerning the
limitations of Von Neumann–Morgenstern (1953) utility
axioms and alternative frameworks based on psycholog-
ical principles proposed. This issue is well beyond the
scope of this report. Recent research, for example Luce
(2000), shows that an expanded set of utility axioms may
serve as a basis for characterizing rational decision-making
that addresses the gains and loss behavior objections. Luce
shows that his axioms are consistent with recent psy-
chological empirical data and competing non-axiomatic
frameworks are not.

2 Michaud (1998, Ch. 3) provides a review of the major
proposed alternatives to classical efficiency and notes
that classical efficiency is far more robust than is widely
appreciated.

3 This result is a simple way to rationalize why many
investors do not use classical optimization in their invest-
ment decisions.

4 Resampled efficiency, as described in Michaud (1998,
Chs. 6 and 7), was co-invented by Richard Michaud
and Robert Michaud and is a U.S. patented procedure,
#6,003,018, December 1999, patent pending worldwide.
New Frontier Advisors, LLC, has exclusive licensing rights
worldwide.

5 The number of returns used to estimate simulated opti-
mization inputs, a free parameter in the resampled effi-
ciency process, is used to condition the optimization
according to an investor’s assumed level of forecast cer-
tainty. This parameter is calibrated from one to ten to
facilitate the user experience. Roughly, at level one the
optimized portfolios are similar to the benchmark or
equal weighting; at level ten the portfolios are similar
to a classical optimization. Various additional research
updates of resampled efficient optimization are available
at www.newfrontieradvisors.com/publications.

6 Incorporating forecast certainty as part of the defini-
tion of practical portfolio optimality is a rational, even
necessary, consideration. In terms of enhanced utility
axioms, Bourbaki (1948), commenting on Godel (1931),
explains that rationality axioms do not characterize but
follow from and codify scientific intuition. There is cur-
rently a widespread misperception in finance concerning
the role of rational utility axioms and rule-based sys-
tems in scientific thought. A review of these and related
issues is given in Michaud (2001). As in the case of
gains and loss behavior, rule-based utility systems that
do not accommodate characteristics of rational thought
should be considered incomplete and reflect the need
for extensions or revisions as in Luce (2000). Resam-
pled efficiency’s inclusion of forecast certainty in defining
portfolio optimality is simply another case where exten-
sions or alternative formulations of utility axioms and an
enhanced notion of rational decision-making in finance are
necessary.

7 An incomplete list is: Breiman (1960), Kelly (1956),
Latane (1959), Markowitz (1959, Ch. 6), Hakansson
(1971a,b), Thorp (1974).

8 Markowitz (1959, Ch. 6).
9 This result will be further illustrated in Section 6.3.

10 Hakansson (1971a) shows that the max E ( log (1 + r))
portfolio may not be on the single-period classical efficient
frontier.

11 Merton and Samuelson (1974) and Samuelson and
Merton (1974).
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12 It should be noted, as in Hakansson (1974), that the objec-
tions raised by Merton and Samuelson can be avoided
by removing the statistical motivation to the argument
in Hakansson (1971b). In fact, log utility is an objective
function in very good expected utility axiom standing.
However, without the statistical argument, log utility
is simply one of many possibly interesting investment
objectives.

13 A different class of ad hoc methods for identifying optimal
portfolios has to do with questionnaires that investors are
asked to answer that purport to measure risk preferences
and result in a recommended “model” portfolio from a
predefined set. Such methods typically have no theoretical
justification and may provide little, if any, reliable or useful
information for investors.

14 Von Neumann and Morgenstern (1953).
15 In this case 0% is also the almost sure limit of the geometric

mean.
16 A surprisingly widespread simple asset allocation error is

to use geometric instead of arithmetic mean inputs in a
classical optimization to moderate the effect of large return
and risk assets and make the solutions more acceptable to
investors. Stein methods, discussed in Michaud (1998,
Ch. 8) are often the appropriate methods for shrinking
outlier data for the purpose of improving forecastability.

17 A statistic may or may not be dependent on the num-
ber of observations in a sample. Examples include sample
size independence of the sample mean and sample size
dependence of the sample variance.

18 Unless otherwise noted, our results in the following are
non-parametric and do not depend on the lognormal
return distribution assumption.

19 Applying the log function to each side of the equality (1)
and invoking the central limit theorem implies that the
N -period geometric mean distribution is asymptotically
lognormal.

20 The fact that a distribution can asymptotically be well
approximated by two different distributions is not unique
in probability theory. The binomial distribution can be
approximated asymptotically by both the normal and Pois-
son distribution under certain conditions. Intuitively, a
lognormal characterization of the asymptotic geometric
mean return distribution may seem more natural because
of the skewness normally associated with multiperiod
returns. However, the N th root function reduces much
of the skewness effect when N is reasonably large.

21 The relationship between N -period geometric mean
return and terminal wealth is given by: WN (r) = (1 +
GN (r))N = ∏

(1 + ri). Applying the log function to

each side of the equality and invoking the central limit
theorem leads to the conclusion that N -period terminal
wealth is asymptotically lognormal.

22 For example, Young and Trent (1969).
23 Michaud (1981) provides caveats on the applicability and

approximation accuracy of these and other formulas.
24 One early comprehensive Monte Carlo study of pension

fund investment policy that included an examination of
the volatility of pension liabilities under workforce census
changes, corporate policy, and market rate assumptions is
given in Michaud (1976).

25 The author first encountered this effect in 1974 when
conducting a Monte Carlo simulation study of proposed
spending and risk policies for the Harvard College Endow-
ment Fund. Under some proposals that were subsequently
rejected, the simulations showed that the fund may have
run out of money within roughly twelve years. Multiperiod
insolvency cases were also encountered in Monte Carlo
studies for individuals that proposed to spend capital at
unsustainable rates.

26 For example: A prospective retiree has $500,000 to invest
for retirement. There are ten years until retirement. The
fund has an expected return of 10% and a 20% standard
deviation. The goal is to purchase a retirement annuity
that will provide $50,000 annual income in constant dol-
lar terms. A life expectancy of 20 years in retirement and a
3% inflation rate is assumed. What is the likelihood of the
$50 K annuity and median annuity value at retirement?
Using simple annuity formulas, a geometric mean analysis
shows that there is a 43% chance of reaching the $50,000
annuity objective for a 20-year period in retirement with
a median value of $45,000. The 20-year distribution of
annuity values and probabilities are displayed in Figure 2.
A less risky strategy of 7% portfolio return and 10% stan-
dard deviation leads to a 17% probability of meeting the
$50,000 annuity objective with a median annuity value of
$38,000.

27 The assumption that allows geometric mean analysis to
address these and other long-term investment planning
issues and multiple objectives is that the consequence of
cash flows leaves the underlying return generating process
unchanged. Adjustment for the impact of intermediate
cash flows is implemented using multiple geometric mean
investment horizon assumptions.

28 Limitations of the lognormal assumption were described
in Section 3.1.

29 Many tax and legal situations are extremely complicated.
Often the only available solutions for cash flow plan-
ning are heuristics that have evolved from experience and
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insight. In such cases, Monte Carlo methods may be the
only recourse. Also the impact of trading decisions and
costs over time may only be resolvable with Monte Carlo
methods. In these and other cases, geometric mean analy-
sis followed by detailed Monte Carlo simulation, assuming
economic feasibility, is the recommended procedure.

30 Unlike classical efficiency, the resampled efficient frontier
may curve downward from some point and may not be
monotone increasing in expected return as a function of
portfolio risk. The investment implications include limi-
tations of high-risk assets not well represented by classical
efficiency.

31 Markowitz (1959, Ch. 6) noted this possibility from
his simulations relative to the geometric mean limit
formula (3).

32 While efficient frontiers in practice often satisfy a bud-
get constraint and non-negative portfolio weights, neither
resampled efficiency nor geometric mean critical point
analysis is limited to such frontiers. In particular, a critical
point can be computed for unbounded leverage effi-
cient frontiers as in Hakansson (1971a) and can be very
revealing.

33 Michaud (1981) provides analytical solutions for the
critical point in terms of portfolio β.

34 It should be emphasized that the critical point is a total,
not residual, risk–return geometric mean concept.

35 The efficient frontier is based on annualized historical
monthly return Ibbotson Associates (Chicago, Il) index
data for six asset classes – T-Bills, intermediate government
bonds, long-term corporate bonds, large capitalization
U.S. equity, small capitalization U.S. equity, international
equity – from January 1981 to December 1993. See
Appendix A for additional critical point issues.

36 The exceptional case is given in Hakansson (1971a) where
the critical point is at the origin.

37 This result is given in Michaud (1981).
38 An all or nothing trading strategy is not the only

way to implement a multiperiod diversification program.
Roughly, the same principles apply to diversifying a fixed
amount of capital over multiple periods in order to manage
trading and other costs.

39 The tax effect could have been dealt with in a number
of ways. It is unlikely that many investors would con-
vert 100% of a one stock portfolio into a diversified fund
in the first period. However, the tax effect is something
of an illusion. Unless taxes can be avoided in some way
altogether, the one stock portfolio is likely to be subject
to tax at some point in the investment horizon and the
comparison may be even more favorable for diversified
funds than illustrated.

40 From Block (1969).
41 For example, Michaud (1979) notes the irrelevance of the

widely used actuarial interest rate in defined benefit plans
as an investment objective for asset allocation.

42 See Michaud (1998, Ch. 10) for further discussion of these
issues.

43 The standard rationale for smoothing assumptions is that
required contributions should not be affected greatly by
relatively ephemeral volatility in capital markets. However,
this argument has the critical flaw that the firm’s business
risks do not exist in isolation to capital market volatility
or changes in the domestic and global economy.

44 An important issue, ignored here, is the impact of the 50%
nondeductible reversion tax now assessed on excess assets
from a terminated US defined benefit pension plan. These
taxes alter the economics of pension plan liability risk. See
Ippolito (2002) for further discussion.

45 These and related issues are discussed further in Michaud
(1998, Ch. 10).

46 See Michaud (1998, Ch. 10).
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