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Abstract 
 
Markowitz (1959) mean-variance (MV) portfolio optimization has been the practical standard 
for asset allocation and equity portfolio management for almost fifty years.  However, it is 
known to be overly sensitive to estimation error in risk-return estimates and have poor 
out-of-sample performance characteristics.  The Resampled Efficiency™ (RE) techniques 
presented in Michaud (1998) introduce Monte Carlo methods to properly represent 
investment information uncertainty in computing MV portfolio optimality and in defining 
trading and monitoring rules.  This paper reviews and updates the literature on estimation 
error and RE portfolio optimization and rebalancing.  We resolve several open issues and 
misunderstandings that have emerged since Michaud (1998). In particular, we show RE 
optimization to be a Bayesian-based generalization and enhancement of Markowitz’s 
solution. 
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Markowitz (1959) mean-variance (MV) optimization has been the standard for efficient 
portfolio construction for almost fifty years.  Nearly all commercial portfolio optimizers for 
asset allocation and equity portfolio management are based on some variation of the 
Markowitz method.  While theoretically important for modern finance, MV optimization’s 
sensitivity to uncertainty in risk-return estimates typically results in an unstable asset 
management framework, ambiguous portfolio optimality, and poor out-of-sample 
performance.  Tests demonstrate that unbounded MV optimized portfolios are dominated 
by equal weighting and have essentially no practical investment value.2   
 
In practice MV optimization is used primarily as a convenient framework for imposing ad 
hoc constraints and providing a scientific veneer for marketing purposes (Michaud 1989).  
We show that MV optimization limitations result primarily from the way investment 
information is used.  Resampled Efficiency™ (RE) optimization and rebalancing, first 
proposed in Michaud (1998, Chs. 6, 7), uses Monte Carlo techniques to define more 
investment effective Markowitz optimized portfolios and portfolio rebalancing and 
monitoring rules.3   
 
This paper reviews and summarizes recent research and new developments in estimation 
error and MV portfolio optimization.4  It includes resolutions of open issues and 
misunderstandings that emerged since Michaud (1998).  The arguments are briefly 
summarized to keep the report of manageable length, with references provided for further 
discussion. 
 
Research Review 
This paper addresses linear constrained MV portfolio optimization and rebalancing from a 
statistical or estimate uncertainty perspective with evaluation in an out-of-sample context.  
The pioneers of an estimate uncertainty statistical perspective of MV optimization include 
Roll (1979), Jobson and Korkie (1980, 1981), Shanken (1985), Jorion (1986, 1992), Frost and 
Savarino (1986, 1988), and Ledoit (1997).  Curiously, the bulk of traditional research in this 
area has focused on unbounded in-sample MV optimization or utility maximization while 
ignoring estimate uncertainty or out-of-sample performance.  Examples include the Black 
and Litterman (1992) procedure, Grinold (1989) formula, Grinold and Kahn (1994, Ch. 6) 
principles, Clarke et al (2002, 2006) rationale, Campbell and Viceira (2002) utility, and Knight 
and Satchell (2006) analysis.  While an in-sample analytical framework may be tractable and 
convenient, unbounded MV optimization without consideration of estimation error often 
leads to irrelevant or misleading trading, optimization universe design, and constraint 
policies that may adversely affect trillions of dollars under current management.5  
 

                                                   
2 Jobson and Korkie (1981). In a more recent study, DeMiguel et al (2006) test the performance of fourteen 
models of unbounded MV portfolio choice in the context of estimation error and find, as in Jobson and 
Korkie, that none seem reliable improvements over equal weighting. 
3 RE optimization, invented by Richard Michaud and Robert Michaud, is protected by U.S and Israeli patents 
and patents pending worldwide.  New Frontier Advisors, LLC (NFA) is exclusive worldwide licensee.   
4 See Michaud and Michaud (2008a) for further discussion.  
5 See Michaud and Michaud (2005b) for more discussion.   
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Academic research on estimation error has largely focused on (unbounded in-sample) 
expected utility maximization.6  However, practitioners typically prefer MV efficiency for 
defining portfolio optimality since investors are more comfortable estimating asset risks 
and returns than parameters of a utility function.  Levy and Markowitz (1979) show that 
portfolios on the MV efficient frontier are often very good approximations of portfolios 
that maximize expected utility for many utility functions and return generating processes in 
practice.7  In addition, Rubenstein (1973) shows that parameter uncertainty is often a serious 
problem in expected utility estimation.  While maximum expected utility using 
sophisticated functions or higher moments of the distribution may claim superiority over 
MV optimization in-sample, increased estimation error may often lead to inferior out-of-
sample risk-adjusted performance. 
 
Scope 
Our focus – out-of-sample risk-adjusted performance of linearly constrained MV optimized 
portfolios – is the framework of choice for asset management in practice.  Following Jobson 
and Korkie (1981), our out-of-sample results are based on simulation tests to avoid the 
unreliability of backtests and unrealistic in-sample analytical results.  Computer algorithms 
that include linear constraints as in Markowitz (1956) are used to compute practical MV 
optimal portfolios.8     
 
MV Optimization Limitations 
The problem that limits the investment value of MV optimized portfolios is not Markowitz’ 
theory.9  Markowitz gives the right way to invest given that you know that you have exactly 
the correct inputs.  The most serious problem is estimation error, or parameter uncertainty, 
in optimization inputs.  Risk-return estimates are highly uncertain in investment practice and 
sensitivity to changes in optimization inputs leads to portfolio optimality ambiguity.  The 
problem of uncertain estimates is compounded by how investment information is 
represented in digital computer optimizations.  A 10% return estimate is stored in computer 
registers with 15 trailing zeros.10  In practice it is investment nonsense to consider that 
significant information exists in the 16th or even 5th decimal place; (many investment 
professionals admit they are happy to just get the sign right).  However, this extremely 
unrealistic view of investment information is implicit in the functioning of many 
optimization algorithms.11  What is missing is any sense of statistically significant differences 
in risk-return inputs, a particular problem in the context of optimization with inequality 

                                                   
6 An early reference is Bawa, Brown, and Klein (1979).  More recent examples include Jorion (1986), Harvey et al 
(2006), DeMiguel et al (2006) and Brandt (2007).   
7 See also Cremers et al (2004).   
8 See Boyd and Vandenberghe (2004) for an up-to-date review of algorithms for solving convex optimization 
problems including Markowitz portfolio optimization.   
9 Michaud (1998, Ch. 3) and Michaud and Michaud (2008a, Ch. 3) review traditional critiques of MV 
optimization.   
10 The IEEE 754 digital computer standard implies data storage of essentially 10 single or 16 double precision 
decimals of floating point data.  The authors use double precision software for computation.   
11 The problem of unrealistic accuracy representation of information and unstable or knife-edge optimizations 
is a general, though widely ignored, problem affecting a variety of industrial, military, medical, robotics, 
economics, as well as financial applications.  
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constraints.  As a result, MV optimization creates unrealistic portfolios leading to likely 
underperformance even with informative inputs.   
 
RE Technology 
RE technology introduces Monte Carlo resampling and bootstrapping methods into MV 
optimization to more realistically reflect the uncertainty in investment information.  The 
end result is generally more stable, realistic, and investment effective MV optimized 
portfolios.  RE technology also includes statistically rigorous portfolio trading and 
monitoring rules and tests for significant assets avoiding the often ineffective and costly 
rebalancings typical of the MV optimization asset management process.  
 
Generally speaking, RE optimal portfolios are constructed as follows (each step is discussed 
in more depth later in the paper): 
 
Step 1. Sample a mean vector and covariance matrix of returns from a distribution of both 

centered at the original (point estimate) values normally used in MV 
optimization.12 

Step 2. Calculate a MV efficient frontier based on these sampled risk and return estimates.  
Step 3. Repeat steps 1 and 2 (until enough observations are available for convergence in 

step 4). 
Step 4. Average the portfolio weights from step 2 to form the RE optimal portfolio. 
Step 5. (optional) Apply investability constraints to 4. 
 
The left-hand panel in Figure 1 illustrates the resampled simulated MV efficient frontier 
procedure for 20 randomly chosen large cap stocks in the S&P 500 index.13,14  The red curve 
is the classical Markowitz MV efficient frontier.  Twenty-five (cyan) simulated MV efficient 
frontiers, using the repeated two steps, are also displayed.15   Note the enormous dispersion 
of the simulated frontiers.  Some simulated frontiers have roughly half the range of risk of 

                                                   
12 This is typically done with resampling, or bootstrapping.  In this paper, bootstrapping generally refers to the 
technique of redrawing historical observations with replacement.  Resampling typically refers to recreating 
the simulated history from an assumed probability distribution such as multivariate normality.  Non-normal 
resampling may be appropriate in some applications but is beyond the scope of this report.    See Efron and 
Tibshirani (1993) for an authoritative discussion of these procedures.  In practice resampling is typically 
convenient since few investment strategies are based solely on risk-return estimates from historical return 
data. 
13 Following Jobson and Korkie (1981), the optimizations are illustrated based on the risk and returns of twenty 
U.S. stocks randomly chosen from 100 largest capitalization stocks in the S&P 500 index with continuous 
monthly returns from January 1997 through December 2006.  The list of stocks, their annualized average 
returns, standard deviations and correlations over the period and further details are given in the Appendix.   
14 Each simulated efficient frontier is defined to be consistent with the uncertainty in the original data set; i.e., 
120 monthly simulated returns are computed for each asset; the simulated returns assume a multivariate 
normal distribution.  The optimized portfolios are constrained to have non-negative weights and sum to one.  
The simulated MV efficient frontier procedure may have a number of variations.  For example, the return 
distribution assumption can be changed or historical data may be bootstrapped.  In many cases in practice the 
number of simulated returns for computing the simulated MV efficient frontiers is not associated with a 
historical return data set and must be assumed. This issue leads to the important (patent pending) concept of 
Forecast Confidence™ (FC) level discussed further below and in Michaud and Michaud (2004a). 
15 In practical applications, many more efficient frontiers are simulated.  However, it serves our pedagogical 
purposes in this case to display only twenty-five simulated frontiers. 
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the original MV efficient frontier while others have significantly more risk.  The range of 
returns among the simulated frontiers is even more impressive considering that the 
experiment reflects ten years of data from well known securities in a major index.  Since 
each of these frontiers represents MV portfolio optimality, MV efficiency may seem almost 
beyond hope of definition when estimation error is considered.  The left hand panel 
provides a vivid rationale for why investment managers typically avoid using MV 
optimization in practice or over manage the process and impose many constraints.16   
 
Figure 1:  Original and Simulated MV Frontiers and the Resampled Efficient Frontier™ 
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Each simulated efficient frontier in the left hand panel consists of 51 portfolios from low to 
high return.  The right hand panel plots the risks and returns of all the portfolios computed 
from all the simulated efficient frontiers in the left hand panel in terms of the Appendix 
risk-return estimates.  RE optimization converts the simulated MV efficient frontiers into a 
single frontier, as displayed in the right hand panel.   
 
The procedure for computing the Resampled Efficient Frontier™ (REF) in the right hand 
panel can be motivated as follows. Every simulated MV efficient frontier in the left hand 
panel of Figure 1 is the right way to invest given a set of inputs.  But the inputs are highly 
uncertain.  How should an investor deal with portfolio optimality uncertainty?   
 
In the case of a highly risk-averse investor, the minimum variance portfolio is the optimal 
portfolio for any given efficient frontier.  Since all simulated frontiers are equally likely, the 
RE optimal minimum variance portfolio is defined as the average of the portfolio weights of 
all the simulated minimum variance portfolios.  The RE optimal minimum variance portfolio 
is plotted at the base of the curve in the right hand panel in Figure 1 relative to the risk-
return estimates of the data in the Appendix.   
 

                                                   
16 The simulated MV efficient frontiers that are the starting point of RE optimization are consistent with 
Efron’s (2005) “empirical Bayes” procedure.  As in Efron, resampling is employed as a powerful statistical tool 
for understanding variability in parameter estimation and for creating “objective” priors. 
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Alternatively, consider an investor who is indifferent to risk.  In this case, the maximum 
return portfolio is the optimal portfolio for any given simulated efficient frontier.  The RE 
optimal maximum return portfolio is defined as the average of the portfolio weights of all 
the simulated maximum return MV optimal portfolios; it is plotted at the top of the curve 
in the right hand panel.  
 
Similarly, RE optimality can be defined for the utility function that characterizes an 
investor’s behavior.  The average of the tangent portfolios on simulated MV efficient 
frontiers relative to the constant expected utility curve defines the RE optimal portfolio.  
The Resampled Efficient Frontier is the collection of all possible RE optimal portfolios with 
risk aversion parameters from expected utility curves ranging from total risk aversion to 
total risk indifference.17  More generally, the REF is based on averages of all properly 
associated optimal portfolios on the simulated MV efficient frontiers.  Mathematically, it is 
an integral in portfolio space, over all possible return distributions consistent with the 
forecast, of the expected value of the MV optimal portfolio weights conditional on the 
constraints.  The resampling/bootstrap process is a Monte Carlo method for estimating this 
integral.18  Since REF portfolios are an average of many properly associated MV optimal 
portfolios, they are safer, less extreme investments.   
 
Properties of MV vs. RE Optimization 
Figure 2 displays the RE and MV frontiers for the data in the Appendix.  The REF plots below 
the classical efficient frontier.  Superficially, RE optimization appears to be inferior as an 
investment framework because it expects less return and restricts risk to a narrower range.19  
Any in-sample study, as in Harvey et al (2006), will conclude that the REF is not optimal since 
in-sample utility is unlikely to be maximized by the REF.  Note that constraints do the same 
thing; i.e., lower and shorten the frontier.  RE optimization can be thought of as a constraint 
based on the level of information in the forecasts.  In practice, analysts nearly always 
impose constraints with the objective of improving performance.  Frost and Savarino (1988) 
show that constraints, while lowering in-sample expectations, improve out-of-sample 
performance.   
 
The proper interpretation of REF vs. classical MV optimality is simple to explain.  If you are 
100% certain of your risk-return estimates (to 16 decimal places of accuracy or more) then 
the Markowitz efficient frontier is the efficient frontier for you.  If you are less than 100% 

                                                   
17 The construction process described is consistent with the appendix in Michaud (1998, Ch. 6).  It highlights 
how rational agents may make investment decisions that lead to REF optimality.  Markowitz and Usmen (2003) 
express concern that RE optimization may require revision of expected utility axioms.  As our discussion 
shows, RE optimization is fundamentally based on expected utility considerations. Their concerns may be due 
to the original description of the procedure in the body of the Michaud (1998) text that used a heuristic 
construction process devoid of utility function considerations.  We note that approximation algorithms of 
the REF have been found convenient and investment effective relative to compute-efficiency and statistical 
stability estimation considerations (see Michaud 1998, Ch. 6, Appendix).  Our views on rationality axioms and 
rule based systems are discussed in Michaud (2003, fn. 6).   
18 Resampling and bootstrap methods in statistics are generally concerned with exploring the variability 
implicit in historical data as in Efron (2005).  RE optimization uses the variability exposed by resampling to 
define a new statistic that did not exist before.   
19 The risk range of the REF may be greater than MV efficiency in some cases; this issue is not material to our 
discussion here. 
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certain of your estimates of risk and return, you expect less return and are less willing to 
put money at risk.  Furthermore, consider an investor with a complete lack of certainty in 
investment information.  In this case the optimal efficient frontier is the no-information 
prior portfolio, either equal- or benchmark-weighted.20  The REF portfolio collapses to the 
no-information portfolio, while Markowitz optimization remains insensitive to information 
uncertainty.  RE optimization is the paradigm of choice for rational decision making under 
conditions of information uncertainty.  
 
Figure 2.  Classical and Resampled Efficient Frontiers 
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Figure 2 illustrates that RE and MV frontiers may be close in MV space.  Superficially this 
may suggest that the procedures produce similar solutions.  Figure 3 provides an illustration 
of portfolio composition differences in MV and RE optimization.  The exhibit is a portfolio 
composition map of the MV and RE optimal asset allocations in Figure 2; it displays the 
allocations from minimum risk on the left hand side of the charts, to maximum return on 
the right hand side of the charts.  Each color represents a particular stock. A vertical slice of 
the chart demonstrates the weights of each stock in the portfolio at that level of risk. The 
left hand panel is the composition map for MV efficiency; the right hand panel represents 
RE optimality.   
 
In the classical case no more than seven of the twenty stocks are included in the MV 
efficient frontier for the upper half of the curve while three stocks are missing over the 
entire spectrum of risk.  Similar examples can be found on nearly every MV frontier.

                                                   
20 It is a necessary condition that the risk spectrum for estimation error sensitive MV portfolio efficiency 
converges to the no-information portfolio as uncertainty increases.  This property contradicts the properties 
of the heuristic Ibbotson-Feldman (2003) and Ceria-Stubbs (2005) methods where the risk spectrum is always 
constant and equal to classical efficiency whatever the level of certainty in investment information.  Note 
also, in contrast to the teachings in Chopra and Ziemba (1993), Figure 2 shows that considering estimation error 
in risk as well as return is fundamentally important for defining portfolio optimality under information 
uncertainty.  
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Figure 3.  MV and RE Frontier Portfolio Composition Maps 
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The composition map for the REF illustrates very different properties.  REF optimality 
includes all assets.  There is a smooth transition from one risk level to another.  RE 
optimization is robust and fundamentally different in character and allocations even when 
the two frontiers are similar in mean-variance space.    
 
One of the most attractive features of REF optimized portfolios is that they often reflect 
investment sense.  As one illustration, consider the maximum return MV and RE efficient 
portfolios in Figure 2.  As Figure 3 indicates, the maximum return MV optimal portfolio 
represents a 100% bet in NTP stock.  In contrast, the maximum return REF portfolio is very 
well diversified and a much less risky more acceptable investment.21   More generally, REF 
optimized portfolios are often consistent with the intuition of professional managers 
across the entire frontier without the need for ad hoc constraints.   
   
Simulation Performance Tests 
RE optimized portfolios have many desirable investment properties relative to MV 
efficiency.  However, the most important feature of RE optimization is its provable 
performance superiority on average. We use a simulation test rather than a back test to 
demonstrate the performance of the alternative strategies, since a back test is time period 
dependent and there are not enough observations available to test for statistical 
significance. 22 

                                                   
21 Note each asset weight in the maximum return REF portfolio is equal to the probability that it is truly the 
maximum return asset. 
22 A simulation proof of superiority requires assumptions about the “truth” distribution of assets for the 
results to be valid.  In particular the truth data set and simulation framework has to make financial sense.  A 
historical data set with negative average returns for some assets does not make sense as a truth in a 
simulation proof with sign constraints.  In more subtle cases some assets may statistically dominate others 
over some spectrum of risk and return.  While RE optimization can’t be proven to have higher out-of-sample 
risk-return in all possible simulation tests, properly implemented it outperforms for financially relevant cases 
of practical interest.  Michaud and Michaud (2008a, Ch. 6, Appendix B) provide a geometric proof of 
superiority that is data set independent.  As discussed below, simulation tests for the index-relative and long-
short case require certain additional considerations for validity (see also Michaud and Michaud 2008a, Ch. 9 
for further discussion).     
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Following Jobson and Korkie (1981) and Michaud (1998, Ch.6), we perform a simulation test to 
compare RE vs. MV optimization.  In a simulation test, a referee is assumed to know the 
true values of asset risks and returns.  The twenty stock risk-return data, shown in the 
Appendix, serves as the “truth” in our simulation experiments.  The referee creates a 
simulated history and provides returns that are statistically consistent with the true risk-
return estimates.  These returns can either be thought of as historical observations of a 
stationary return distribution, or a number of noisy estimates of next period’s return.  The 
Markowitz and RE investors compute their efficient portfolios based on the referee’s 
supplied returns.  The referee uses the true risk-return values to score the optimized 
portfolios.  Figure 4 gives the average of the results after many simulation tests. 
  
Figure 4:  Comparison of MV and RE Performance 
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The curves displayed in Figure 4 represent the averaged results from the simulation test.  
The left hand panel displays the average MV and RE efficient frontiers computed from the 
referee’s returns, the portfolios that were submitted to the referee for scoring.  The higher 
(red) dotted curve is the MV efficient frontier; the lower (blue) dotted curve is the REF.  The 
left hand panel represents what the Markowitz and RE investors see on average given the 
referee’s data.  The right hand panel of Figure 4 illustrates the average results of how the 
submitted efficient frontier portfolios performed when the referee applied the true risk-
returns.  The higher (blue) solid curve represents the RE optimizer results; the lower (red) 
solid curve the Markowitz optimizer results.  The right hand panel of Figure 4 shows that 
the RE optimizer, on average, achieves roughly the same return with less risk, or 
alternatively more return with the same level of risk, relative to the Markowitz optimizer.23   
 
The simulation experiment illustrates that the RE optimized portfolios are, on average, more 
effective at improving risk-adjusted investment performance.24  RE optimized portfolios 

                                                   
23 Markowitz and Usmen (2003) replicated the Michaud (1998, Ch. 6). 
24 The results assume a MV optimization for total or real return, sign and budget constrained, optimized 
portfolios.  The results can be generalized to include leverage.  The index- or benchmark-relative, and long-
short optimization frameworks are discussed in a subsequent section; simulation proofs are available in 
Michaud and Michaud (2008a, Ch. 9).  There is no performance improvement for unbounded MV optimization.   
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perform better because they are better risk managed and avoid the unrealistic use of 
investment information that characterizes Markowitz MV optimization solutions.25 
 
Optimizer or Inputs   
Asset managers have largely ignored the limitations of MV optimization technology in their 
investment process.  Instead, the limitations of optimized portfolios in investment practice 
are typically addressed with proposals for improving risk-return estimates and allocating a 
considerable percentage of resources to the effort.  Practitioner as well as academic 
financial literature is replete with various exotic statistical and investment proposals for 
improving optimization inputs.  Our simulation studies suggest there is an additional route 
for improved optimized portfolio performance: a better optimizer.  The notion that an 
improved optimizer may be as or more important than improved inputs is foreign to many.   
 
Bayesian parameter estimation methods are among the most important tools in modern 
statistics for improving risk-return estimates.26  Bayesian estimation in a simulation study 
often reflects a superior level of risk-return estimation than can be achieved in investment 
practice.  Markowitz and Usmen (2003) address the issue of the relative importance of 
Bayesian estimation versus RE optimization.  They develop a Bayesian diffuse prior 
procedure to enhance risk-return estimation.  Using a simulation test framework as in 
Michaud (1998, Ch. 6), they compare the performance of their Bayesian enhanced risk-
return estimates and MV optimization to RE optimization with unenhanced risk-return 
estimates.  To their surprise, the RE optimized portfolios exhibited superior performance on 
average and in every one of their 30 individual tests.27 
 
Markowitz-Usmen Implications 
The Markowitz-Usmen results may appear to defy investment intuition.  One simple 
explanation is that MV optimization always assumes unrealistic accuracy regardless of the 
quality of the inputs.  The level of investment information presumed by the optimization 
process (16 decimal places of accuracy) is almost always inconsistent with investment 
information.  The end result is that classical optimization overuses investment information 
and creates extreme portfolios that typically perform poorly in practice.   
 
Bayesian parameter estimation is not an always better procedure; a perverse prior may lead 
to poorer, not better, estimates.  Markowitz and Usmen (2003) cleverly finesse the perverse 
Bayesian prior problem by using a diffuse prior in their study.28  The perverse Bayesian prior 

                                                   
25 Knight and Satchell (2006) find no benefit to RE optimization.  However, they only examine the unbounded 
case.   
26 A useful reference is Robert (1994). 
27 The Harvey et al (2008) tests disputing Markowitz and Usmen (2003) are based on a different procedure for 
computing RE optimized portfolios than that used in Markowitz and Usmen.  This alternative procedure has 
been shown to have inferior out of sample performance to that used by Markowitz and Usmen (see Michaud 
1998, Chapter 6, Appendix).  This difference could explain their results.  Also, their one-step-forward test is 
actually in- not out-of-sample and their characterization of long-term investor behavior for rationalizing their 
results does not conform to any in our experience. See Michaud and Michaud (2008b) for further discussion.   
28 Harvey et al (2006) claim to improve on the Markowitz-Usmen Bayesian estimation procedure by handling 
higher moments.  Their results however are not in the Levy-Markowitz (1979) framework assumed in this paper 
or used by most practitioners.  Moreover they note that their results are addressed to improved in-sample 



 Estimation Error and Portfolio Optimization 
 

 12 

is a major concern in statistical estimation theory.  Efron (2005), in his American Statistical 
Association presidential address, advocates “empirical Bayes” methods to avoid the effects 
of a perverse prior in Bayesian analysis while attempting to retain its improvement of 
statistical estimation power.  The resampling and bootstrap methods Efron advocates 
conceptually resemble RE optimization.    
 
In the RE optimization process, economically meaningful portfolio constraints serve as the 
fundamental mechanism for improving RE optimized portfolios.   For example, non-
negativity constraints express the diffuse Bayesian belief that all assets in the optimization 
universe are desirable investments.29  Diffuse Bayesian constraint priors operate on RE 
optimized portfolio structure by imposing reliable constraints on portfolio weights for each 
resampled optimized portfolio.  The improvement in RE optimized portfolios results from 
the interaction of Bayesian prior constraints with the RE optimization averaging process.  
The Markowitz-Usmen results can be rationalized by observing that non-negative 
constraints and RE optimization may often be more restrictive in defining optimality than 
Bayesian parameter estimation in classical optimization.30       
 
While it is interesting to compare the relative value of statistically improved inputs versus 
RE optimization, the procedures are conceptually complementary, not exclusive.  
Procedures for improving the investment value of estimates are always worthwhile.   
 
Certainty Level and RE Optimality  
Up until now, we have avoided the issue of level of information in risk-return estimates.  
Except as noted, our performance studies were based on simulating ten years of monthly 
returns.  While consistent with our historical data set and appropriate from an academic 
point of view, the simulation test framework has limitations for practice.   
 
Very generally, investors do not know that their risk-return estimates reflect the 
information contained in ten years of stationary monthly returns as reflected in simulations 
of the Appendix data.  One reason is that risk-return estimates in practice are rarely based 
solely on historical return data.  More importantly, certainty varies by investor, strategy, and 
economic and market outlook among many factors.  To be useful, RE optimization must be 
customizable to the perceptions of many kinds of investors, strategies, and investment 
horizons.  
 
The number of simulated observations used to compute the simulated MV efficient 
frontiers in each resampling of risk-return estimates is a free parameter of the RE 
optimization process.  As the number of observations becomes large, every set of 

                                                                                                                                                          
expected utility rather than out-of-sample risk-adjusted performance as in Markowitz-Usmen and Michaud 
(1998, Ch. 6).    While we do not dispute their in-sample results, our focus is on out-of-sample investment 
properties. 
29

 As indicated below, the diffuse Bayesian prior constraints for the index-relative or long-short case are 
different.   
30 Note that Harvey et al (2006) characterize the Michaud optimization resampling approach as changing the 
order of Bayesian integration.  The Markowitz-Usmen results indicate that order of integration is non-trivially 
important.  The order of integration is important because diffuse constraints may be highly reliable 
informative Bayesian priors on optimal portfolio structure. 
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simulated risk-return estimates becomes increasingly similar to the original set, and the REF 
approaches the MV efficient frontier.  When the number of observations becomes small, 
the REF approaches the no-information prior efficient portfolio.   
 
The number of simulated observations is a natural way to model the amount of confidence 
an investor has in their risk-return estimates.31  Figure 5 provides an illustration of the 
resulting frontiers at different levels of information.  As confidence increases, REF portfolios 
become less diversified because they use information more actively as the frontier 
approaches the classical.  The number of simulated observations is a mechanism for tuning 
the optimization process according to the level of certainty and time horizon associated 
with estimates.32   
 
Figure 5.  Classical and Resampled Efficient Frontiers:  Forecast Confidence Levels 
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Considerations of information confidence level lead to an important conclusion.  RE 
optimization is simply a generalization of Markowitz MV optimization that allows the 
investor to control the amount of confidence they have in their investment information in 
the optimization process.     
 
Optimality and Investability 
Theoretically the REF includes non-zero allocations for all the assets in the optimization 
universe.  Given enough simulations, there will be at least one that includes a non-zero 
allocation to a given asset in a simulated MV frontier.  This is similar to the market portfolio 
or global minimum variance portfolio, both of which theoretically include an allocation to 
every asset in the universe.  In contrast, MV optimization typically excludes many assets in 
the efficient frontier.  This important difference highlights the proper role of an optimizer: 
optimally weighting assets in the optimization universe.  Choosing investable assets is the 
role of the analyst, not the optimizer.  Excluding assets is a serious, though often ignored, 
negative property of classical linear constrained MV optimization.  

                                                   
31 To facilitate the user experience we have created a Forecast Confidence™ (FC) level scale ranging from 1 to 
10, indicating very low to very high information level.  On this scale Markowitz optimization is an 11 and 
complete uncertainty 0.  See further discussion in Michaud and Michaud (2004a).   
32 See Michaud and Michaud (2004a) for applications. 
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From a practical point of view, however, many REF allocations may be investment 
nuisances.  The issue of “too small” allocations is one of investability, not optimality.  Many 
non-zero REF optimal allocations may not be investable depending on the amount of 
invested capital and other liquidity considerations.33  Michaud and Michaud (2003) teach 
that the proper procedure for dealing with investability in the context of RE optimality is to 
impose investability constraints during a second optimization step using mixed integer 
programming best approximation.  This two step process permits the investor to overlay 
the optimal portfolio with practical trading and other considerations.   
 
The REF Maximum Return Point 
A statistical approach to portfolio optimality leads to some significant differences from 
classical MV optimization.  One significant difference is that the REF curve may peak and 
then slope downward.34  If the maximum risk portfolio on the REF is not also the maximum 
return portfolio, we call this the “maximum return point” (MRP) of the REF.  The possible 
existence of an MRP is an important and very useful property of REF portfolio optimality.   
 
Figure 6 illustrates how the REF MRP may arise.  In each panel there are three high risk 
assets; uncertainty is indicated by the elliptical confidence region around each point.  The 
left hand panel depicts the Markowitz case, where perfect certainty in information implies 
the risk and return are point estimates.  Here, the maximum return portfolio includes only 
the maximum return asset and no MRP is possible.  The middle panel exhibits a moderate 
amount of uncertainty in the return distribution of the three assets.  Since the true 
maximum return asset can no longer be known with certainty, the REF maximum return 
portfolio includes a significant amount of the middle asset (although not as much as the 
top asset) and has lower expected return than the Markowitz maximum return portfolio.  
The right hand panel depicts a high level of uncertainty in the expected return estimates of 
the three assets.  Since there is little statistical distinction between the three assets, the REF 
includes significant allocations in all three assets.  In this case a MRP may emerge where the 
REF has a downward-sloping inefficient segment.  Any risk beyond the MRP is not optimal 
and not on the REF by definition.   
.   
The MRP arises because RE optimization uses information from all assets in the optimization 
universe to form portfolio return expectations—the presence of risky low return assets 
means similarly risky high return assets may not realize such high returns in the future.  The 
MRP defines a new upper-bound on the level of risk which we can be confident will lead to 
increasing expected portfolio return. 35,36   
 

                                                   
33 See also Michaud (1998, Ch. 12, p. 135).   
34 See Michaud and Michaud (2004b). 
35 Preliminary simulation tests are consistent with out-of-sample replication of in-sample REF MRPs. 
36 The existence of the MRP is a useful way of justifying much institutional investment practice where 
assumed tracking error in equity portfolio optimization is often far less than the maximum available.  
Alternatively, not knowing the limits of efficient risk in an optimized portfolio may adversely afflict asset 
management for many leveraged hedge fund managers.   
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Figure 6.  Forecast Certainty Levels and the REF Maximum Return Point37 

 
 
A REF MRP is relatively rare in asset allocation studies, because assets in the optimization 
universe often have similar attractive risk-return characteristics.  In contrast, a REF MRP is 
often observed in large stock universe equity portfolio optimizations.  This is because the 
optimization universe may have many assets that have little return and high risk.  The 
identification of the MRP prevents the overuse of inferior investments as they generally 
have small allocations before the MRP, but may have large allocations at greater risk levels.  
The MRP helps to identify the amount of information in forecasts, and has useful 
applications to the proper scaling of return forecasts. 
 
But why would an investor include an inferior asset in the optimization universe in the first 
place when shorting is not allowed?  Merton (1987) teaches that the optimization universe 
should always be defined in terms of what you know.  An asset with high risk and low 
return may have no statistically significant investment information.  An optimizer is not 
designed to tell which investments are to be ignored.  This is much like including 
inappropriate data in a Bayesian prior.  However, Merton’s advice in the context of a large 
stock optimization universe that only includes statistically significant equities may result in 
unacceptable tracking error risk with many underrepresented sectors and industries.  One 
simple solution for resolving these competing objectives is described in Michaud and 
Michaud (2005a): include an index-weighted composite asset of the statistically insignificant 
stocks in the index in the optimization.38  The Merton principle of investing only in what 
you know remains the appropriate one.     
 
RE Rebalancing  
Portfolio optimization information is often insignificant.  In particular, many estimates of 
stock alphas in an equity portfolio optimization relative to a large index are likely to be 
statistically insignificant.  MV optimization is insensitive to investment insignificance 
resulting in frequent portfolio rebalancings that may have no investment value.  Familiarity 
with the limitations of MV optimization for asset management has led to numerous ad hoc 
rebalancing rules.  Managers often rebalance on an arbitrary time schedule, such as monthly, 
quarterly, or annually.  Alternatively, portfolio weights are assigned arbitrary ranges, such as 
plus or minus 10%; if an asset weight in the current portfolio is out of the range, the 

                                                   
37 This figure is from chapter 6 of Michaud and Michaud (2008a). 
38 Further description and implications of using the composite asset are given in the reference. 



 Estimation Error and Portfolio Optimization 
 

 16 

investor rebalances the portfolio.  Portfolio rebalancing in practice is essentially portfolio 
maintenance with little, if any, evidence of investment effectiveness.  Conceptually, 
portfolio rebalancing should be based on statistically significant differences relative to 
optimality.39  RE rebalancing provides the appropriate tool for understanding statistically 
significant differences.   
 
Figure 7 illustrates how the RE rebalancing rule works.  By definition, every portfolio on the 
REF is an average of properly associated portfolios.  The large dot indicates a selected 
“middle” optimal REF portfolio.40  The small dots (magenta) surrounding the selected 
portfolio indicates the associated simulated efficient frontier portfolios.  The associated 
portfolios provide a framework for defining “nearness” for a given metric, risk level, and 
confidence level.  The relative variance or “tracking error” between the optimal and 
associated portfolios provides a convenient metric.41  Using this metric, the relative variance 
is computed for the current portfolio and for each associated optimal portfolio relative to 
the indicated REF optimal portfolio.  The RE rebalancing rule defines the “need-to-trade” 
probability as the percent of associated portfolio relative variances closer to the optimal 
portfolio compared to the current portfolio.  A 10% need-to-trade probability implies that 
only 10% of the associated portfolio variances are closer than the current portfolio in the 
metric.   
 
Figure 7.  Resampled Efficiency and Associated Efficient Portfolios 
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The RE portfolio rebalancing rule has some interesting investment properties.  The need-to-
trade probability measures portfolio structure similarity by taking into account the means, 
variances, and covariances of all the assets in the optimization universe.  An overweight in 
large cap stocks and an underweight in mid cap stocks are not as significant as a similar 
overweight in emerging markets and underweight in non-U.S. bonds.  The rebalance 

                                                   
39 Academic methods for understanding statistically significant differences between portfolios, usually 
associated with tests of the Capital Asset Pricing Model, such as Shanken (1985), are based on an unbounded 
MV optimization framework and not useful for portfolios in practice.  See also Michaud (1998, Ch. 7, App. A).   
40 The middle portfolio used in Figures 7 and 8 is defined as the REF rank 31 portfolio from the spectrum of 
ranks 1 to 51 computed portfolios.  The magenta simulated portfolios are all similarly ranked meta-reseampled 
efficient frontier portfolios.  See Michaud and Michaud (2008a, Ch. 6) for further details.   
41 Other metrics may also be of interest depending on applications and can be used to define the RE 
rebalancing rule. 
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probability is a measure of how similar the current portfolio will perform relative to the 
optimal portfolio in the investment period.  RE rebalancing provides a statistically rigorous 
and investment meaningful measure of when rebalancing is necessary. 42    
 
The RE need-to-trade probability is a portfolio rebalancing rule.  It does not indicate 
portfolio imbalances at the asset level.  However, the associated portfolios in Figure 7 can 
also be used to compute a statistical analysis that is useful for understanding imbalances at 
the asset level and for portfolio monitoring.  Each associated portfolio has an optimal 
allocation to each asset in the optimization universe.  Percentile ranges and standard 
deviations can be computed for each asset, resulting in a linear regression type statistical 
analysis for the optimal portfolio.   
 
Figure 8 displays the results of such a statistical analysis for the Appendix data for a REF 
middle optimal portfolio.  There may be no direct relationship between the size of an 
allocation and the size of the bounds.  For instance, note that the optimal allocation to TIF 
and MKC are nearly the same though different in significance or importance in the 
optimization.  When the current portfolio weights lie outside the percentile bounds, 
rebalancing may be indicated.  The procedure can also be used to enhance the Sharpe 
(1992) returns-based style analysis procedure by including statistical estimates of the 
significance of the style coefficients.   
 
Figure 8.  Middle REF Portfolio Bounds (25th/75th Percentile Asset Weight Ranges)  
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The RE rebalancing rule has been enhanced with meta-resampling techniques since it was 
described in Michaud (1998, Ch. 7).43  The new procedure provides substantially enhanced 

                                                   
42 The portfolio rebalancing test can also be used to estimate a cost minimization statistically equivalent 
optimal portfolio.   
43 Michaud and Michaud (2002).  The new procedure was allowed as a patent in August 2005, Robert Michaud 
and Richard Michaud co-inventors.  For the purposes of statistical estimation, every simulated MV efficient 
frontier becomes the basis of computing an associated resampled efficiency frontier; the meta-resampling 
uses the portfolios on the associated resampled efficient frontiers in the trading rule and estimates of 
statistical parameters.  See Michaud and Michaud (2008a, Ch. 7) for additional details.   
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and relatively uniform statistical power across the entire range of portfolios on the REF.  
The meta-resampling rebalancing method features customization capabilities for various 
investment strategies, applications, and asset management characteristics.  The enhanced 
procedure also markedly reduces the skewness of asset weight distributions. 44  
 
Benchmark-Relative Optimization  
Benchmarks arise naturally in many asset management contexts.  Active manager 
performance is typically evaluated relative to the residual return or tracking error with 
respect to some benchmark or index.45  MV optimization is defined as maximizing portfolio 
residual return relative to a given level of residual or tracking error risk.46  Estimation error 
uncertainty is as important in benchmark- or index-relative optimization as in sign-
constrained MV optimization.  However, RE optimization requires accommodation to the 
presence of (relatively) unattractive, as well as attractive, assets in the optimization 
universe.  
 
Non-ad hoc optimization constraints should be an expression of your beliefs.  They act as 
Bayesian priors in MV as well as RE optimization.47  Index-relative sign-consistent constraints 
(less/greater than or equal to the index weight for negative/positive residual return assets) 
perform the same Bayesian function as sign constraints in total return optimizations. 48   
Also, as in sign-constrained total return optimization, simulation tests show that RE index-
relative optimization with appropriate index-relative constraints outperforms MV 
optimization.49   
 
Index-relative optimization can be described as long-short optimization without leverage.  
Equity portfolio long-short optimization is currently very topical.  This is because many 
standard equity portfolio indices, such as the S&P 500, are highly asymmetric.  In long-only 
optimization, index weight asymmetry affects the nature of the optimized portfolio.  This is 
because small index-weight stocks can only receive a small underweight relative to negative 
information but can be overweighted relative to positive information with little limitation.  
In contrast, large index-weight stocks are less biased by positive or negative information 
relative to index weights.  Assuming estimation error is relatively index-weight symmetric, 
the optimizer may invest heavily in attractive small index-weight stocks but cannot offset 

                                                   
44 The Britten-Jones (1999) range estimates of optimized portfolio weights are only useful for unbounded MV 
optimization.  Our meta-resampling procedure produces investment relevant coefficients for the practical 
case of linear constrained MV optimized portfolios with less variance.   
45 The index or benchmark in asset allocation studies may be an index or a return liability.  In equity portfolio 
optimization, portfolio risk is typically defined in a CAPM or APT framework.  See Michaud and Michaud 
(2008a, Chs. 9 and 10) for further discussion.  
46 The benchmark redefines risk in terms of the return of an investment relevant objective.     
47 As Theil (1971, pp. 346-350) notes, analysts often have valuable extraneous information including 
introspection on the value of coefficients where “pure estimation” or dependence solely on the data is 
suboptimal.  RE optimization methods may be viewed as an enabling technology for including reliable linear 
constraints in many multivariate estimation and maximization contexts.    
48 There are important exceptions to simple rules of thumb that impose residual return index-weight relative 
sign constraints.   One alternative, to define Bayesian prior constraints that depend on the statistical 
significance of the index-relative information, is beyond the scope of this report.  These issues are addressed 
further in Michaud and Michaud (2008a, Ch. 9).   
49 See Michaud and Michaud (2008a, Ch. 9). 
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this with large underweights in unattractive small index-weight stocks, often resulting in a 
small index-weight stock portfolio bias.50    
 
Proper optimization design requires avoiding pitfalls such as a small cap bias for asymmetric 
indices.  A long-short 120/20 or 130/30 strategy may allow relatively symmetric constraints 
on stocks in an optimization universe. 51,52  Two-fund long-short strategies may also limit the 
impact of index asymmetric constraints on portfolio optimization.53  Another simple 
alternative is a two-stage optimization; the first stage determines the theoretically optimal 
portfolio with index-symmetric constraints; the second stage attempts to closely replicate 
this portfolio while satisfying investability constraints.   
 
Constraints reflecting beliefs are intimately associated with the particular character of 
investment information for a given asset manager or strategy.  RE optimization, properly 
implemented may be as important for improved long-short investing as for more traditional 
contexts. Understanding the non-ad hoc Bayesian role of constraints is essential in 
managing inadvertent biases as well as reaping the benefits of a statistical approach to 
portfolio optimization.54    
 
Additional Properties 
RE optimization can be understood as an information level constraint.  For example, in a 
two asset case, the REF lies on, but does not extend as far as, the classical efficient frontier.  
The shorter REF indicates that the risk likely to be rewarded with increased return is less 
than the maximum return asset.  It is noteworthy that this result is consistent with much 
professional practice; few recommended asset allocations involve portfolios near the top 
of the MV efficient frontier.  RE optimization quantifies this important investment intuition.  
Even for two asset cases, RE optimization provides useful investment information. 
 
The REF may exhibit puzzling behavior in in-sample MV space.  One example is that the REF 
may have a non-concave segment.  While a linear combination of portfolios on the REF 
may lie above the REF, this fact has no particular consequence since portfolios always exist 
above the REF in MV space.  REF non-concavity may be associated with a gap or paucity of 
estimates in a region of the efficient frontier or estimates inconsistent with rational 

                                                   
50 A manager may consider a small cap portfolio bias desirable.  The point of the example is to note that a 
small cap bias emerges in index-relative portfolio optimization from long-only constraints in asymmetric 
indices independent of any capitalization based information asymmetry.   
51 Long-short optimized portfolios generally need to satisfy certain conditions (Jacobs et al 2006a) in order to 
have practical investment value.  Some additional conditions may be necessary to control unlikely extreme 
events in the resampling process.   
52 See Jacobs and Levy (2006b).   
53 In the classical long-short case analyzed in Michaud (1993), before shorting, both the long and short 
portfolios are sign constrained creating relatively symmetric constraints in the total portfolio.   
54 The discussion teaches that thoughtful constraints on optimal portfolio structure are your friends and 
should always be included.  Note how avoiding estimation error in the unbounded MV optimization analytical 
framework in Clarke et al (2002, 2006) leads to very different conclusions.   
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pricing.55  Alternatively, non-concavity may simply indicate that the simulation has not 
converged and requires more simulations.   
 
Since the REF is always below the classical frontier in MV space, in-sample utility analysis 
always trivially indicates less “utility” or “information ratios” for RE optimal portfolios.  RE 
optimization does not maximize in-sample parameters, rather it accounts for the possibility 
these parameters are wrong.   
 
Conclusion 
RE technology is a generalization of Markowitz MV optimization that allows investors to 
include the level of certainty in risk-return estimates in the optimization, rebalancing, and 
monitoring process.  Avoiding the literal use of investment information implied by 
Markowitz optimization is a necessary though not sufficient condition for improved risk-
adjusted performance.  By factoring in estimation error in a Bayesian-like framework, RE 
optimization avoids unreliable and self-defeating principles of design and management that 
follow from in-sample parameter certainty MV portfolio optimization analytics.  RE 
optimization also benefits from improved Bayesian forecasting and other improvements to 
the optimization inputs.  When properly used, a new framework emerges that provides a 
far more reliable and productive route for research and effective asset management.      
 

                                                   
55 One important source of the inhomogeneous optimization universe problem is the disconnect between 
return and risk estimation in equity portfolio optimization.  Alpha is typically estimated independently from 
commercial risk models.  As a consequence, the return to risk distribution may not exhibit rational pricing. 
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Appendix:  Twenty Stock Data Set 
 
A Standard & Poor’s 500 list of stocks and their market capitalizations were taken as of 
October 2006.  The market capitalizations were discounted back via monthly total returns 
to approximate market capitalizations in January 1997.  The 20 Large Cap stock set was 
taken from a random sample of the 100 largest of these market capitalization stocks.  Ten 
years of complete monthly returns for the sample spans January 1997 through December 
2006. 
 

Ticker Asset Name Return 
Standard 
Deviation 

BOL Bausch & Lomb 13.5% 36.9% 
NE Noble Corporation 24.4% 46.7% 
AZO AutoZone Inc. 19.9% 33.0% 
FISV Fiserv Inc. 20.7% 31.7% 
DGX Quest Diagnostics 36.9% 49.0% 
SYK Stryker Corp. 25.8% 33.5% 
STZ Constellation Brands 32.4% 54.2% 
TIF Tiffany & Co. 23.9% 41.6% 
SVU SUPERVALU Inc. 17.2% 29.9% 
MIL Millipore Corp. 13.9% 38.2% 
LEN Lennar Corp. 32.0% 38.6% 
PAYX Paychex Inc. 19.9% 32.3% 
RHI Robert Half International 19.9% 40.3% 
NTAP Network Appliance 55.2% 79.4% 
LH Laboratory Corp. of America Holdings 37.8% 56.0% 
R Ryder System 13.1% 29.3% 
FDO Family Dollar Stores 21.2% 31.3% 
MKC McCormick & Co. 15.9% 19.3% 
XTO XTO Energy Inc. 47.5% 58.4% 
ABC Amerisourcebergen Corp. 21.1% 38.9% 



Twenty Stock Data Set Correlations: 
 

  BOL NE AZO FISV DGX SYK STZ TIF SVU MIL LEN PAYX RHI NTAP LH R FDO MKC XTO ABC 

BOL 1 0 0.08 0.17 0.06 0.23 0.04 0.21 0.25 0.12 0.03 0.07 0.13 0.08 0.08 0.22 0.17 0.15 0 0.24 

NE 0 1 0.08 0.21 0.03 0.21 0.05 0.25 -0.09 0.25 0.27 0.15 0.07 0.47 0.21 0.14 0.21 0.06 0.43 -0.05 

AZO 0.08 0.08 1 0.1 0 0.27 0.09 0.23 0.32 0.14 0.34 0.08 0.03 0.06 0.03 0.19 0.35 0.14 0.05 0.12 

FISV 0.17 0.21 0.1 1 0.09 0.29 -0.05 0.35 0.35 -0.01 0.24 0.26 0.23 0.11 0.02 0.24 0.13 0.13 0.01 0.17 

DGX 0.06 0.03 0 0.09 1 0.04 0.59 0.04 0.1 0.06 -0.01 0.15 0.09 0 0.71 0.02 0.03 0.05 0.39 0.22 

SYK 0.23 0.21 0.27 0.29 0.04 1 0 0.15 0.26 0.2 0.28 0.13 0.09 0 0.08 0.12 0.27 0.19 0.15 0.13 

STZ 0.04 0.05 0.09 -0.05 0.59 0 1 0.03 0.21 -0.01 0.01 0.11 -0.04 -0.07 0.48 0.09 0.24 0.16 0.38 0.09 

TIF 0.21 0.25 0.23 0.35 0.04 0.15 0.03 1 0.2 0.21 0.3 0.25 0.22 0.41 -0.03 0.33 0.25 0.14 0.11 -0.08 

SVU 0.25 -0.09 0.32 0.35 0.1 0.26 0.21 0.2 1 0.13 0.24 0.29 0.32 0 0.18 0.24 0.33 0.34 0.04 0.21 

MIL 0.12 0.25 0.14 -0.01 0.06 0.2 -0.01 0.21 0.13 1 0.07 -0.11 0.13 0.31 0.09 0.06 -0.01 -0.01 0.14 0.03 

LEN 0.03 0.27 0.34 0.24 -0.01 0.28 0.01 0.3 0.24 0.07 1 0.24 0.09 0.18 0.03 0.19 0.46 0.25 0.16 0.24 

PAYX 0.07 0.15 0.08 0.26 0.15 0.13 0.11 0.25 0.29 -0.11 0.24 1 0.29 0.35 0.12 0.12 0.34 0.18 0.18 0.02 

RHI 0.13 0.07 0.03 0.23 0.09 0.09 -0.04 0.22 0.32 0.13 0.09 0.29 1 0.28 -0.02 0.29 0.09 0.02 -0.1 0.18 

NTAP 0.08 0.47 0.06 0.11 0 0 -0.07 0.41 0 0.31 0.18 0.35 0.28 1 0.01 0.07 0.12 -0.09 0.12 -0.09 

LH 0.08 0.21 0.03 0.02 0.71 0.08 0.48 -0.03 0.18 0.09 0.03 0.12 -0.02 0.01 1 0.06 0.09 0.09 0.41 0.19 

R 0.22 0.14 0.19 0.24 0.02 0.12 0.09 0.33 0.24 0.06 0.19 0.12 0.29 0.07 0.06 1 0.29 0.12 0 0.05 

FDO 0.17 0.21 0.35 0.13 0.03 0.27 0.24 0.25 0.33 -0.01 0.46 0.34 0.09 0.12 0.09 0.29 1 0.34 0.24 0.13 

MKC 0.15 0.06 0.14 0.13 0.05 0.19 0.16 0.14 0.34 -0.01 0.25 0.18 0.02 -0.09 0.09 0.12 0.34 1 0.29 -0.02 

XTO 0 0.43 0.05 0.01 0.39 0.15 0.38 0.11 0.04 0.14 0.16 0.18 -0.1 0.12 0.41 0 0.24 0.29 1 0.03 

ABC 0.24 -0.05 0.12 0.17 0.22 0.13 0.09 -0.08 0.21 0.03 0.24 0.02 0.18 -0.09 0.19 0.05 0.13 -0.02 0.03 1 
 

 
 
 




