
 

 

  
 
 
 
 
 

 
 

Estimation Error and the “Fundamental Law of 
Active Management” 

 

By 
Richard O. Michaud, David N. Esch, and Robert O. Michaud * 

 
 
 
 
 
 

 
 
 
 
 
 
Draft: September 2019  
 
© 2019 New Frontier Advisors, LLC. All rights reserved.  
 
Please do not copy or reproduce in any form without permission of the authors. 

 

                                                 
* Richard O. Michaud is CEO of New Frontier Advisors, LLC, Boston, MA 02110; David N. Esch is Managing Director of 
Research of New Frontier Advisors LLC.; Robert O. Michaud is CIO of New Frontier Advisors, LLC. 



2 
 

Abstract 
 

According to widely referenced applications of the Grinold (1989) “Fundamental Law” theory, 

simply adding more securities to an optimization universe, adding more factors to a forecast 

return model, trading more frequently, or reducing more constraints can add investment value 

to an optimized investment strategy.  We show with intuitive discussion followed by a novel 

simulation study that applications of the Grinold theory for optimized portfolio design are often 

unreliable and self-defeating.  Critical limitations are due to ignoring estimation error (Michaud 

1989) and constraints required in practical applications.  A substantial fraction of professional 

actively managed funds may be negatively impacted. 
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Benchmarks arise naturally in judging asset manager competence and for meeting investment 
goals.  An active investment manager typically claims to provide enhanced return on average 
relative to a given benchmark or index for a given level of residual risk.  The information ratio (IR) 
– estimated return relative to benchmark per unit of residual risk or tracking error – is a 
convenient and ubiquitous framework for measuring the value of active investment strategies.   
 
The Grinold (1989) “Fundamental Law of Active Management” asserts that the maximum 
attainable IR is approximately the product of the Information Coefficient (IC) times the square 
root of the breadth (BR) of the strategy.* The IC represents the manager’s estimated correlation 
of forecast with ex post residual return while the BR represents the number of independent bets 
or factors associated with the strategy.  GK assert that the “law” provides a simple framework 
for enhancing active investment strategies.  While a manager may have a relatively small amount 
of information or IC for a given strategy, performance can be enhanced by increasing BR or the 
number of independent bets in the strategy.  In particular, they state “The message is clear: It 
takes only a modest amount of skill to win as long as that skill is deployed frequently and across 
a large number of stocks.”†  Their recommendations include increasing trading frequency, size of 
the optimization universe, and factors to models for forecasting return.  Assumptions include 
independent sources of information and IC constant for each added bet or increase in BR.   
 
Clarke, de Silva and Thorley (2002, 2006) (CST) generalize the Grinold formula by introducing the 
“transfer coefficient” (TC). TC is a scaling factor that measures how information in individual 
securities is “transferred” into optimized portfolios.  TC represents a measure of the reduction in 
investment value from optimization constraints. This widely influential article has been used to 
promote many variations of hedge fund, long short, alternative, and unconstrained investment 
strategies.‡  
 
A significant literature exists on applying Grinold theory and variations for rationalizing various 
active equity management strategies.  Extensions include Buckle (2004), Qian and Hua (2004), 
Zhou (2008), Gorman et al (2010), Ding (2010), Huiz and Derwall (2011), Ding and Martin (2017).  
Industry tutorials and perspectives include Kahn (1997), Kroll et al (2005), Utermann (2013), 
Darnell and Ferguson (2014), Menchero (2017).  Teachings include the Chartered Financial 
Analyst (CFA) Institute Level 2, the Chartered Alternative Investment Analyst (CAIA) Level 1 and 
many conferences and academic courses in finance. Texts discussing the formula and applications 
include Focardi and Fabozzi (2004), Jacobs and Levy (2008), Diderich (2009), Anson et al (2012), 

                                                 
* The Grinold formula is analytically derived and based on an inequality-unconstrained maximization of quadratic 
utility.  It should not be confused with Markowitz (1952, 1959) which assumes linear (inequality and equality) 
constrained portfolios and requires quadratic programming techniques to compute the MV efficient frontier. In 
particular, the Markowitz efficient frontier is generally a concave curve in a total or residual return framework while 
in Grinold (see e.g., GK 1995, p. 94) it is a straight line emanating from a zero residual risk and return benchmark 
portfolio.  The Grinold derivation also assumes IC small, in the order of 0.1.  
† GK (1995, Ch. 6, p. 130), also GK (1999, Ch. 6, p. 162). 
‡ One example is Kroll et al (2005). Michaud (1993) was the first to note possible limitations of the long-short active 
equity optimization framework.  



4 
 

Schulmerich et al (2015). A very substantial fraction of globally professionally managed funds is 
estimated to employ optimized portfolio design principles that are applications of Grinold theory.   
 
We show with both qualitative discussion and a novel Monte Carlo simulation study that the GK 
and CST proposals based on Grinold theory for optimized portfolio design are unreliable and 
often self-defeating.  Applications are based on a theory that assumes no estimation error in 
plays of the investment game as in roulette in a casino.*  Unlike roulette, the investment game 
signal is not constant and may often be negative.  As we show in Figure 1 in our simulation study, 
there is an enormous difference how optimized strategies perform on average out-of-sample 
when estimation error is assumed (Michaud 1989).  Our simulation results generalize the classic 
JK and FS simulation studies and rationalize the empirical “1/N” results as in deMiguel (2007).  
The GK and CST precepts of active management and a cohort of published papers have been 
largely unchallenged for more than twenty-five years.  The limitations we identify are estimated 
to affect a substantial fraction of globally professionally managed active equity funds. 
 
The outline of the paper is as follows. Section 1 presents the Grinold formula, the GK and CST 
prescriptions for active management with reference to the GK casino management rationale. 
Section 2 discusses the limitations of the GK and CST prescriptions from an intuitive investment 
perspective. Section 3 provides a discussion of properties of index-relative mean-variance (MV) 
optimization and previous simulation studies relevant to our results.  Section 4 presents our 
Monte Carlo simulation study that demonstrates that applications associated with the 
fundamental law are likely invalid and often self-defeating.  Section 5 provides a summary and 
conclusions.  
 

1.0 Grinold’s Fundamental Law of Active Management 
Grinold (1989) theory is an approximate decomposition of the information ratio (IR) generally 
associated with active equity optimized portfolio management.  Grinold shows that the MV 
optimization of an inequality unconstrained residual return investment strategy is approximately 
proportional to the product of the square root of the breadth (BR) and the information 
correlation (IC).† Mathematically,  
 

  IR  IC * BR  
 
where  IR = information ratio = (alpha) / (residual or active risk) 
  IC = information correlation (ex ante, ex post return correlation) 

BR = breadth or number of independent sources of information. 
 

The formula teaches that successful active management depends on both the information level 
of the forecasts and the breadth associated with the optimization strategy.  However, GK and 

                                                 
* To be clear, we note that the term “estimation error” in this manuscript refers to Monte Carlo simulation 
experiments that measure how estimates of optimization parameters impact out-of-sample investment 
performance, and not, as in Zhou (2008) or Kritzman (2010), to refer to statistical estimation issues.   
† The detailed derivation is given in GK, Ch. 6, and Technical Appendix.  
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CST go further.  They apply the Grinold formula to assert that investment performance can be 
enhanced with only a modest amount of information (IC) by increasing the number of assets in 
the optimization universe, the number of forecast factors, more frequent trading and reducing 
optimization constraints.   
 
GK use a casino roulette game to rationalize applications of the Grinold formula to asset 
management in practice.*  The probability or IC of a winning play (for the casino) of the roulette 
game is small but more plays (breadth) lead to the likelihood of more wealth.  However, there 
are important differences between the play of a roulette game in a casino and the play of an 
investment game in practice.  In the casino context, probability of a winning play or IC is known, 
positive, and constant.  In an investment game, the IC is unstable and may often be negatively 
related to return.  In the context of estimation error, increasing the number of plays of an 
investment game may often be undesirable.  While interesting, the casino game rationale for 
rationalizing applications of the Grinold formula to actual investment practice is invalid.   

 
2.0 Discussion of GK and CST Prescriptions 
GK and CST propose four principles of optimized portfolio design for enhanced investment value 
in an index-relative MV optimization framework.  We discuss the limitations of each prescription 
in turn from an intuitive point of view. 

 
2.1 Large Optimization Universe Fallacy 
GK argue that investment value increases with the size of the optimization universe conditional 
that the IC is roughly equal for all securities in the optimization universe. How realistic is this 
assumption?  
 
For a small universe of securities, the assumption of uniform average IC may be tenable. Small 
universes may be homogeneous in character. However, for a large and expanding optimization 
universe, it seems untenable to assume uniform average IC across all subsets. Any manager will 
naturally use the securities with the best information first. While, theoretically, adding more 
assets may add marginally to breadth, all other things the same, it is also likely to result in less 
predictable securities and reduce the overall average IC level of the universe. A lower average IC 
may cancel any gains made from increasing breadth.  
 
The issue can be framed in a more common practical setting. Consider an analyst suddenly asked 
to cover twice as many stocks. Given limitations of time and resources, it is highly unlikely that 
the analyst’s average IC is the same for the expanded set of stocks. Issues of resources and time 
are the primary reasons why analysts tend to specialize in areas of the market or use managers 
in investment strategies that limit the number of securities that they cover. In practice, many 
traditional managers limit the number of securities they include in their active portfolio to not 
much more than twenty or fifty. Except for relatively small asset universes, the average IC and 

                                                 
* The casino roulette game framework is very consistent with the assumptions used in the Grinold derivation in GK 
(1995, 1999, Ch. 6. App.)   
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overall level of IR may often be a decreasing function of the number of stocks in the optimization 
universe, all other things the same. GK seem to be aware of these limitations, for example as 
suggested by their statement “The fundamental law says that more breadth is better, provided 
the skill can be maintained.” Nevertheless, average IC and optimization universe size are likely 
negatively correlated in applications.    
 

2.2 Multiple Factor Model Fallacy 
Large stock universe optimizations typically use indices such as the S&P500, Russell 1000 or even 
a global stock index as benchmarks. In this case, individual analysis of each stock is generally 
infeasible and analysts typically rely on factor valuation frameworks for forecasting alpha. For 
example, stock rankings or valuations may be based in part on an earnings yield factor.* As GK 
note, if earnings yield is the only factor for ranking stocks, there is only one independent source 
of information and breadth equals one.  
 
In the Grinold formula, the IR increases with the number of independent positive significant 
factors in the multiple valuation forecast model. However, in practice, asset valuation factors are 
often highly correlated and may often be statistically insignificant, providing dubious out-of-
sample forecast value.† Finding factors that are reasonably uncorrelated and significantly positive 
relative to ex post return is no simple task.  
 
Factors are often chosen from a small number of categories considered relatively uncorrelated 
and positively related to return such as value, momentum, quality, dividends, and discounted 
cash flow.‡ The breadth of multiple valuation models may often be very limited independent of 
the size of the optimization universe.§,** As in adding stocks to an optimization universe, adding 
factors at some point may include increasingly unreliable factors that are likely to reduce, not 
increase, the average IC of an investment strategy.  
 
Michaud (1990) provides a simple illustration of the impact of adding factors to a multiple 
valuation model. While adding investment significant factors related to return can be additive to 
IC, it can also be detrimental in practice. There is no free lunch. Adding factors can as easily 
reduce as well as enhance investment value, and the number of factors that can be added while 
maintaining a desirable total IC is generally limited in practice.  
 

  

                                                 
* Some standard methods for converting rankings to a ratio scale to input to a portfolio optimizer include Farrell 
(1983) and references.  
† There is a practical limit to the number of independent investment significant factors even in many commercial risk 
models, often far less than ten. 
‡ Standard methods such as principal component analysis for finding orthogonal risk factors are seldom also reliably 
related to return over independent periods.  
§ See e.g., Michaud (1999).  
** While principal component or factor analysis procedures for identifying orthogonal factors in a data set may be 
used, most studies find no more than five to ten investment significant identifiable factors that are also useful for 
investment practice.  
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2.3 Invest Often Fallacy 
GK recommend increasing trading period frequency or “plays” of the investment game to 
increase the BR, and thus the IR of a MV optimized portfolio. The Grinold formula assumes trading 
decision period independence and constant IC level. However, almost all investment strategies 
have natural limits on trading frequency.* For example, an asset manager trading on book or 
earnings to price will have significant limitations increasing trading frequency smaller than a 
month or quarter. Reducing the trading period below some limit will generally reduce 
effectiveness while increasing trading costs.  
 
Fundamentally, trading frequency is limited by constraints on the investment process relative to 
investment style.† Deep value managers may often be reluctant to trade much more than once a 
year while growth stock managers may want to trade multiple times in a given year. Increased 
trading, to be effective, requires increasing the independence of the trading decision while 
maintaining the same level of skill. This will generally require increased resources, if feasible, all 
other things the same. The normal trading decision period should be sufficiently frequent, but 
not more so, in order to extract relatively independent reliable information for a given 
investment strategy and market conditions.  
 
It is worth noting that the notion of normal trading period for an investment strategy does not 
imply strict calendar trading. Portfolio drift and market volatility relative to new optimal may 
require trading earlier or later than an investment strategy “normal” period. In addition, a 
manager may need to consider trading whenever new information is available or client objectives 
have changed. Portfolio monitoring relative to a normal trading period including estimation error 
is further discussed in Michaud et al (2012).  

 
2.4 Remove Constraints Fallacy 

Markowitz’s (1952, 1959) MV optimization can accommodate linear equality and inequality 
constraints. In actual investment practice, MV optimized portfolios typically include many linear 
constraints. This is because MV optimized portfolios are sensitive to estimation error in estimated 
inputs that often lead to unintuitive and impractical portfolios (Michaud 1989).  Constraints are 
often imposed to manage instability, ambiguity, poor diversification characteristics, and 
enhanced out-of-sample performance.  However, constraints added solely for marketing or 
cosmetic purposes may result in little, if any, investment value and may obstruct the deployment 
of useful information in risk-return estimates.  
 
In general, inequality constraints are necessary in practice. Inequality constraints reflect the 
financial fact that even the largest financial institutions have economic shorting and leveraging 
limitations. Recently, Markowitz (2005) demonstrates the importance of practical linear 

                                                 
* Special cases may include proprietary trading desk strategies where the information level is maintained at a 
reasonable level and trading costs are nearly non-existent. Other cases, such as high frequency and algorithmic 
trading are arguably not investment strategies but very low-level IC trading pattern recognition relative to highly 
sophisticated automated liquidity exchange intermediation.  
† Trading costs and market volatility are additional considerations. 
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inequality constraints in defining portfolio optimality for theoretical finance and the validity of 
many tools of practical investment management. Long-only constraints limit liability risk, a largely 
unmeasured factor in many risk models and often an institutional requirement. Regulatory 
considerations may often mandate the use of no-shorting inequality constraints. Performance 
benchmarks may often mandate index related sets of constraints for controlling and monitoring 
investment objectives.  Moreover, inequality constraints limit the often-negative impact of 
estimation error in out-of-sample performance (Frost and Savarino 1988).   
 

3.0 Testing GK and CST proposals  
Investment managers often use a back test to demonstrate the likely value of a proposed 
investment strategy.  In this procedure, a factor or strategy is evaluated on how it performed for 
historical data over some period.  While the benefit of a back test may be practicality, no reliable 
prospective information is possible by definition.  It is no less, and no more, than what happened 
over some historical period.  Back tests are notorious for misleading investors, resulting in loss of 
wealth, careers, and dissolution of firms.  Investors should be keenly aware of the serious 
limitations of any back test as evidence of the reliability of any factor relationship or investment 
strategy.*   
 
A simulation study is a far more reliable framework for testing the value of optimized investment 
strategies.  Such a procedure evaluates the likely out-of-sample performance of an in-sample 
optimized portfolio for many realistic investment scenarios.   
 
In the following sections, we explain the summary statistics used to evaluate the out-of-sample 
performance of investments from following the prescriptions of the fundamental law, describe 
the simulation test framework in detail, and discuss the results of our simulation experiment.     

 
3.1 Portfolio simulation study framework 
Our study uses a framework similar to other well-known simulation studies for portfolio 
construction methods.† In this framework, a referee is assumed to know the true means, 
standard deviations, and correlations for a set of assets and consequently the true max Sharpe 
ratio (MSR) for an optimized portfolio of those assets.  The players do not know the referee’s 
true MV parameters.  The players receive simulated returns based on the referee’s parameters, 
so they can only observe the truth obscured by estimation error, as is true for all real-world 
investment managers.  The players then compute optimal weights for their strategies and report 
the simulated MSR optimal portfolios for the referee to score.  The referee determines the true 
Sharpe Ratios (SRs) for the simulated MSR optimal portfolios.  The procedure is repeated many 
times for referee-simulated returns, and averages of true simulated optimal portfolio SRs 
computed for each player.  In this way, the out-of-sample performance of each player’s strategy 
can be compared, and the better strategy determined.    

  

                                                 
* Even long-term academic studies remain susceptible to unreliability in practice.  
† For example, Jobson and Korkie (1981). 
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3.2 Prior MV optimization simulation studies  
Jobson and Korkie (JK) (1981) provide the classic study of the effect of estimation error on the 
out-of-sample investment value of unconstrained MV optimized portfolios.*  In their study, the 
referee’s truth is based on historically estimated MV inputs for twenty stocks.  They Monte Carlo 
simulate returns assuming a multivariate normal distribution of five years of monthly return data.  
They find that the average of the true SRs, as measured by the referee, of simulated MSR optimal 
portfolios, was twenty-five percent of the true MSR of the referee’s optimal portfolio.  In 
addition, they show that equal weighting substantially outperforms the optimized portfolios.†  
They conclude that unconstrained MV optimization is not recommendable for practice. 
 
Frost and Savarino (FS) (1988) perform a related simulation study for long-only MV optimized 
portfolios.  They find that additional constraints may often add investment value to the out-of-
sample performance of MV optimized portfolios.  Economically realistic constraints may often 
act like Bayesian priors focused on portfolio structure enforcing rules representing legitimate 
information not contained in the optimization inputs. Such restrictions can mitigate estimation 
error in risk-return estimates implicitly by forcing the simulations towards more likely optimal 
portfolios.   
 
We note that the JK and FS studies contradict the theoretical results of CST for two different size 
stock universes.  Our study confirms and generalizes their results conditional on optimization 
universe size. 
 

4.0 Simulating Adding Breadth while Maintaining Information Levels  
In the standard interpretation of the Grinold formula, each spin of the roulette wheel adds one 
unit of breadth to the investment game.  There is no uncertainty as to whether additional spins 
will continue to be advantageous for the house even when the odds are only slightly in its favor. 
In our simulations, the critical deviation from the GK roulette wheel framework is that estimation 
error of the probability of a win for the investment house is neither known nor constant.  Our 
objective is to construct a Monte Carlo simulation in the context of estimation error where each 
randomly selected incremental asset has variable information but a constant expectation of 
adding one unit of breadth. Therefore, the simulated optimized portfolios will be affected by 
estimation error, but the average of the simulations will exhibit constant incremental breadth. 
 

4.1 Simulation Methodology 
We begin with a sample of historical market return data‡ of 500 stocks that will be the basis for 
our simulations.   This particular dataset is immaterial to our argument.  What is essential is that 

                                                 
* A budget (sum to one) constraint is also assumed.  Note that the JK study applies equivalently to unconstrained 
quadratic utility portfolio optimization, a framework widely used in financial theory and for the development of 
many investment strategies.   
† An equal weighted portfolio is a simple way to compare the optimality of unconstrained optimized portfolios.   
‡ We use a recent history of US market data (1994-2013) of publically available data to create our master asset list 
and corresponding mean and variance parameters. We selected all the assets from the largest 1000 in market 
capitalization with contiguous data from the period, excluding returns greater than 50% or less than -50% per month. 
We were able to find 544 stocks that met our criteria. Parallel experiments with shorter histories were also run to 
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the master dataset represents a realistic set of expected returns and full-rank covariance matrix 
for the largest sample size of the experiment.* 
 
We propose a novel simulation framework that consists of random sampling without 
replacement of increasing size subsets of the 500 stocks of the referee’s risk-return estimates 
from the master optimization universe. The averaging of the results of thousands of samplings 
without replacement from the given 500 stock universe with increasing size provides a solution 
to estimating the Grinold theoretical concept of increasing a unit of breadth for increasing 
number of assets.  In this way, the functional form of average out-of-sample simulation 
performance can be compared to Grinold theory prediction of a monotonic increasing concave 
function of breadth. 
 
We Monte Carlo simulate returns assuming a multivariate normal distribution for the referee’s 
mean and covariance matrix.  Each simulation consists of sampling without replacement of the 
500 stocks of increasing size to 500 assets.  The referee’s truth is computed by independently 
adding assets to the referee’s expected return and covariance matrix.  The problem of computing 
a sample covariance from simulated returns is avoided by assuming the referee’s covariance.  
This assumption eliminates non-full-rank covariance estimation from simulated returns as a 
plausible explanation of our results.†  It also means that our results represent a very generous 
upper bound of average out-of-sample performance for actual practice.   
 

4.2 Unconstrained, Long-only, and Equal Weight 
Figure 1 reports the results of our simulation studies.  It consists of three panels of simulation 
results for 0.1, 0.2, and 0.3 IC levels of estimation error from optimization universes from five to 
500 assets. Each value presented on the graph is averaged from 16,000 samplings without 
replacement optimizations. The three graphed series in each panel show the out-of-sample 
average SRs resulting from three different optimization methods. The “unconstrained” series 
displays the out-of-sample averages of the true SRs for the simulated unconstrained MSR 
portfolios, the “equal weight” series displays the average true SRs of equal weighted portfolios, 
and the “constrained” series reflects the out-of-sample averages of the true SRs of simulated 
long-only MSR portfolios.  The fourth graph in green reflects the average SRs for unconstrained 

                                                 
investigate if selection bias affects results, with no positive findings, so we present the twenty-year history here.  
Readers wishing to replicate our experiment can access our data at 
http://newfrontieradvisors.com/media/1657/estimation_error_and_the_fundamental_law_data.csv. 
* A principal components decomposition of our referee’s covariance matrix confirms that none of the independent 
dimensions of the system vanish. All of the eigenvectors are needed to replicate our forecast to reasonable precision. 
If some of the eigenvalues were vanishingly small, the practical answer to the question of breadth would be quite 
different from the mathematically rigorous one. However, the full covariance matrix of 500 assets in our dataset has 
a smallest eigenvalue of over 10 basis points, which is likely significant for most definitions of statistical significance. 
This would correspond to an annualized standard deviation of approximately 11%, which is substantial by most 
measures. The submatrices of smaller portfolios tend to have even greater values for the smallest eigenvalue. This 
line of reasoning confirms that the effective breadth of a sample of size N from our universe is identically N in a 
practical sense as well as the theoretical one.  
† In particular, this assumption avoids the issues in Fan et al (2008).   
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MV optimization for the no estimation error case as a function of optimization universe size in 
Grinold theory.   
 
Our simulations confirm and generalize the simulation study results in JK and FS and provide a 
rationale for the empirical results in deMiguel et al (2007).  In particular, equal weight is far 
superior to unconstrained optimization, as in JK, for optimization universes of modest size, such 
as in asset allocation studies and consistent with the larger optimization universe in FS, where 
long only dominates unconstrained and equal weight.  Our results provide a single consistent 
framework for summarizing and extending the classic results in historical studies on estimation 
error relative to the Grinold framework.       
 
The three levels of the Grinold assumed IC:  0.10, 0.20, and 0.30 is computed by varying the 
number of periods of simulated returns for each size universe.  Because of the Monte Carlo 
nature of our experiment, the average realized ICs for each sample size are close but not exactly 
equal to target.*  The observation sizes for each target IC were determined by calibrating the 
largest portfolio size (500) for the experiment.  While IC levels greater than 0.10 are not formally 
applicable to predictions from the Grinold formula, our simulations transcend assumptions in the 
theory and may have important teachings in other investment applications.  While each of the 
reports for stock subsets without replacement will necessarily reflect randomness of adding 
stocks, averaging over 16,000 such simulations should represent a very reliable estimate of 
additive breadth for a realistic data set of historical returns.  Our results should be reasonably 
representative for similar datasets of practical interest.  
 
In the case of IC equal to 0.30, the out-of-sample unconstrained performance nearly attains the 
level of the constrained case for the largest sample size of 500 assets. However, these 
experiments avoid any consideration of financial frictions or costs that would limit the investment 
value of large universe optimized portfolios.†  Our assumption of an error free covariance matrix 
further upward biases our simulations.  Our results should provide convincing evidence of the 
limitations of ignoring estimation error for portfolio optimization design.  
 

4.3 Further Discussion 
Our deliberate optimism on how additive breadth is modeled when increasing the size of the 
optimization universe in the simulations has important implications. All of the assets in the 
simulation universe are assumed to have some investment value.  Consequently, an investor is 
little harmed by putting portfolio weight on a “wrong” asset. In the real world, constraints often 
limit the harm caused by misinformation. In a truly chaotic world with a lot of estimation error 
and bias, the equal weighted portfolio, which uses no “wrong” information to distinguish among 
assets, can be hard to beat, for small optimization universes such as in asset allocation strategies.  
 
The consistent slow rising level of unconstrained simulated optimized portfolio average true SRs 
as universe size increases is a necessary artifact of our simulation framework. This is because, by 

                                                 
* Results are available on request.   
† See for example Grossman and Stiglitz (1988).   
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design, our simulations assume a consistent level on average of realized IC regardless of universe 
size.  In practice, many investment strategies have an optimal universe size.  Beyond some point, 
increasing universe size is likely to be self-defeating in practice.  
 
5.0 Summary and conclusions 
Our narrative does not contradict the simple intuition that investment performance is a function 
of skill and breadth.  It is always true that it is better to have more reliable information (IC) and 
more additional investment opportunities to apply it (BR).  The crucial limitation associated with 
applications of the theoretical Grinold square root law result from a failure to consider the impact 
of estimation error on MV utility portfolio optimization in practical applications.  In addition, 
Grinold’s formula is based on the false premise that IC and BR can be thought of independently.  
However, even under the highly idealized conditions of our simulation study where BR can be 
additively applied while holding IC level constant, the results in Figure 1 dramatically contradict 
the predictions of Grinold theory.    
 
The results in Figure 1 generalize and extend the classic JK and FS simulation studies and help 
rationalize the empirical “1/N” results in DeMiguel et al (2007).  Our simulation framework 
enables measurement of the theoretical notion of Grinold additive “breadth.”  
 
Our results have important implications for contemporary investment practice. For more than 
twenty-five years, Grinold theory applications have often been considered the bible of 
professionally managed quantitative equity funds.  Our results indicate that the popular four 
principles of optimized portfolio design proposed by GK and CST from applications of the Grinold 
formula – frequent trading, adding securities, adding forecast factors, and removing constraints 
– are not reliably beneficial and may often be self-defeating.  Estimation error affects the 
reliability of many of the results in the cohort of research related to applications of Grinold 
theory.  Many rationales for investing in hedge funds, long short, alternatives, and unconstrained 
strategies may be impacted.   
  
The necessary conditions for reliably winning the investment game remain the fundamental 
principles of reliable long-term asset management: 1) investment significant information and 
high quality investible assets relevant to a given size optimization universe; 2) economically 
meaningful constraints; and 3) properly implemented estimation error sensitive portfolio 
optimization technology.   
 
The ultimate root of the failure of applications of the theoretical Grinold formula is one of many 
examples of the fundamental and ubiquitous fallacy in many areas of social science of regarding 
inference from in-sample statistics and fixed probability models as the full measure of 
uncertainty.*   

 

                                                 
* Knight (1921) and Weisberg (2014).  
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Figure 1 
Average Maximum Sharpe Ratios by Information Level, Referee Covariance 

 
 

Figure 1: Average SRs for three different portfolio construction methods and three different information 
coefficients for the equity optimization case, using the referee’s covariance matrix. Target information coefficients 
are not precisely attained by the simulations and realized ICs are shown in Table 1. This experiment was run on 
many simulations of up to 500 U. S. stocks which had at least 20 years of contiguous monthly price data ending in 
December 2013. 
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