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CHAPTER 1 INTRODUCTION  

MARKOWITZ EFFICIENCY 

 

Markowitz (1959) mean-variance (MV) efficiency is the classic paradigm of modern finance for 

efficiently allocating capital among risky assets.  Given estimates of expected return, standard 

deviation or variance, and correlation of return for a set of assets, MV efficiency provides the 

investor with an exact prescription for optimal allocation of capital.  The Markowitz efficient 

frontier (Exhibit 1.1) represents all efficient portfolios in the sense that all other portfolios have 

less expected return for a given level of risk or, equivalently, more risk for a given level of 

expected return.  In this framework, the variance or standard deviation of return defines 

portfolio risk.  MV efficiency considers not only the risk and return of securities, but also their 

interrelationships.   
 

 

Exhibit 1.1 illustrates these concepts: Portfolio A is assumed to be the investor's current 

portfolio, with a given expected return and standard deviation.  Portfolio B is the efficient 

portfolio that has less risk at the same level of expected return of portfolio A.  Portfolio C is the 

efficient portfolio that has more expected return at the same level of risk as portfolio A.  The 

efficient frontier describes the mean and standard deviation of all efficient portfolios.   
 

In most modern finance textbooks, MV efficiency is the criterion of choice for defining optimal 

portfolio structure and for rationalizing the value of diversification.  Markowitz efficiency is 

also the basis for many important advances in positive financial economics.  These include the 

Sharpe (1964)-Lintner (1965) capital asset pricing model (CAPM) and recognition of the 

fundamental dichotomy between systematic and diversifiable risk. 
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Many investment situations may use MV efficiency for wealth allocation.  An international 

equity manager may want to find optimal asset allocations among international equity markets 

based on market index historic returns.  A plan sponsor may want to find an optimal long-term 

investment policy for allocating among domestic and foreign bonds, equities and other asset 

classes.  A domestic equity manager may want to find the optimal equity portfolio based on 

forecasts of return and estimated risk.  MV optimization is sufficiently flexible to consider 

various trading costs, institutional and client constraints, and desired levels risk.  In these cases, 

and in others, MV efficiency serves as the standard optimization framework for modern asset 

management. 

 

AN ASSET MANAGEMENT TOOL 

 

MV optimization is useful as an asset management tool for many applications, including: 

 

1. Implementing investment objectives and constraints.   

2. Controlling the components of portfolio risk. 

3. Implementing the asset manager’s investment philosophy, style and market outlook. 

4. Efficiently using active return information (Sharpe 1985, 666-70).  

5. Conveniently and efficiently imbedding new information into portfolios. 

 

TRADITIONAL OBJECTIONS 

 

Academics and practitioners have raised a number of objections to MV efficiency as the 

appropriate framework for defining portfolio optimality.  These "traditional" criticisms of MV 

efficiency tend to fall into one of the following categories:   

 

1. Investor Utility:   

The limitations of representing investor utility and investment objectives with the mean 

and variance of return. 

 

2. Multiperiod Framework:   

The limitations of MV efficiency as a single-period framework for investors with 

long-term investment objectives, such as pension plans and endowment funds. 

 

3. Asset-Liability Financial Planning:   

Claims that asset-liability simulation is a superior approach for asset allocation. 

 

Chapter 3 examines each category of objection in detail.  These traditional objections often do 

not address the most serious limitations of MV optimizers, nor do they provide useful 

alternatives in many cases.  On the other hand, the robustness of MV optimization is often 

unappreciated, and several workarounds make the MV framework useful in many situations of 

practical interest.   
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THE MOST IMPORTANT LIMITATIONS 

 

In practice, the most important limitations of MV optimization are instability and ambiguity.  

MV optimizers function as a chaotic investment decision system.  Small changes in input 

assumptions often imply large changes in the optimized portfolio.  Consequently, portfolio 

optimality is often not well defined.  The procedure overuses statistically estimated information 

and magnifies the impact of estimation errors.  It is not simply a matter of garbage in, garbage 

out, but, rather, a molehill of garbage in, a mountain of garbage out.  The result is that optimized 

portfolios are “error maximized” and often have little, if any, reliable investment value.  Indeed, 

an equally weighted portfolio may often be substantially closer to true MV optimality than an 

optimized portfolio.   

 

The frequent failure of optimized portfolios to meet practical investment objectives has led a 

number of sophisticated institutional investors to abandon the method for alternative procedures 

and to rely increasingly on intuition and priors.  The limitations of MV optimization have also 

contributed heavily to the lack of widespread acceptance of quantitative equity management.  

The problems of MV optimization are not easily resolved with alternative risk measures, 

objective functions, or simulation procedures: They are endemic to most optimization 

procedures. 

 

RESOLVING THE LIMITATIONS OF MEAN-VARIANCE OPTIMIZATION  

 

The problems of MV optimization instability and ambiguity are ultimately those of over-fitting 

data.  Statistical estimates define an efficient frontier.  Because of variability in the input 

estimates, many portfolios are statistically as efficient as the ones on the efficient frontier.  In 

other words, an appropriate statistical test would not be able to differentiate the efficiency of 

many portfolios off the efficient frontier from those on it.  A computation of all the "statistically 

equivalent" efficient portfolios1 reveals the variability and essential statistical character of MV 

optimization.  A statistical perspective helps to resolve many of the most serious practical 

limitations of MV optimization and is often associated with a significantly reduced need to trade.       

 

Many of the most important methods for reducing the instability and ambiguity of the 

optimization process and enhancing its investment value are based on statistical procedures that 

have largely been ignored by the financial community.  These techniques come from financial 

theory, econometrics, and institutional research and practice. 

 

Practitioners may ignore procedures for enhancing MV optimization for a variety of reasons.  

The enormous prestige and goodwill Markowitz and his work enjoy in the investment 

community have led many to ignore the obvious practical limitations of the procedure. Many 

influential consultants, software providers, and asset managers have vested commercial interests 

in the status quo.  For others, practical considerations have hampered implementation.  Until 

recently, some of the statistical techniques have been inconvenient or inaccessible because they 

required high-speed computers and advanced mathematical or statistical software.  Finally, the 

                                                           
1 Chapter 4 provides an illustration of statistically equivalent efficient portfolios. 



EFFICIENT ASSET MANAGEMENT    Page 4   

 

   

 

statistical character of MV optimization requires a fundamental shift in the notion of portfolio 

optimality, the need to think statistically, and a significant increase in procedural complexity.  

 

ILLUSTRATING THE TECHNIQUES 

 

Asset allocations are important in their own right and provide a useful framework for analyzing 

many of the fundamental problems of optimization.  A simple global asset allocation problem 

illustrates several of these issues and alternative procedures.   

 

The new methods presented here can significantly reduce the impact of estimation errors, 

enhance the investment meaning of the results, provide an understanding of precision, and 

stabilize the optimization.  In isolation, each procedure can be helpful; together, they may have 

a substantial impact on enhancing the investment value of optimized portfolios. 
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CHAPTER 2 CLASSIC MEAN-VARIANCE OPTIMIZATION 

 

This chapter describes in relatively simple terms some of the essential technical issues that 

characterize MV optimization and portfolio efficiency.  For the sake of compact discussion, the 

introduction of some basic assumptions and mathematical notation are useful.  An example of 

an asset allocation optimization illustrates the techniques presented here. 

 

PORTFOLIO RISK AND RETURN 

 

Suppose estimates of expected returns, variances or standard deviations, and correlations for a 

universe of assets.1  The expected return,  (mu), of a portfolio of assets P, P, is the 

portfolio-weighted expected return for each asset.2   The variance 2 (sigma squared) of a 

portfolio of assets P, P
2, depends on the portfolio weights, the variance of the assets in the 

portfolio and the correlation,  (rho), between pairs of assets.3  The standard deviation  is the 

square root of the variance and is a useful alternative for describing asset risk.  One reason for 

preferring the standard deviation to the variance is that it is in the same units of return as the 

mean.   

 

Exhibit 2.1 shows the mean and standard deviation for a portfolio consisting of two assets.  It 

illustrates some essential properties of portfolio expected return and risk.  Asset 1 has an 

expected return of 5% and risk of 10%, and asset 2 has an expected return of 10% and risk of 

20%.  Five curves connect the two assets and display the risk and expected return of portfolios, 

ranging from 100% of capital in asset 1 to 100% in asset 2.  The asset correlations associated 

with the five curves (from right to left) are 1.0, 0.5, 0, -0.5, and -1.0.   

 

The five curves illustrate how correlations and portfolio weights affect portfolio risk and 

expected return.  When the correlation is 1, as in the extreme right-hand curve in the exhibit, 

portfolio risk and expected return is a weighted average of the risk and return of the two assets.  

In this case, there is no benefit to diversification.  In all other cases, except for the assets 

themselves, portfolio risk is less than the weighted average of the risk of the assets.  In most 

cases, asset correlations are less than 1.  U.S. stock correlations are often within a 0.3 to 0.5 

range.  As the level of correlation diminishes, the amount of available risk reduction increases.  

                                                           
1  As noted below, the covariance can also define the optimization risk parameters.   
2  Let i, i=1 … N, refer to the expected return for asset i in the N asset universe.  Let wi refer to the weight of 

asset i in portfolio P.  The sum of portfolio weights wi times the expected returns i for each asset i in the universe 

is equal to the expected return for portfolio P.  In mathematical notation, the symbol i  denotes the summation 

from 1 to N and the portfolio expected return is defined as:  P=iwi*i.   
3 Following the notation above, the variance of portfolio P, P

2, is the double sum of the product for all ordered 

pairs of assets of the portfolio weight for asset i, the portfolio weight for asset j, the standard deviation for asset i, 

the standard deviation for asset j and the correlation between asset i and j.  In mathematical notation, P
2 = i j 

wi*wj*i*j*i,j, where  is the standard deviation (square root of the variance) and  is the correlation.  The 

quantity i,j is known as the covariance.  It is equal to i*j*i,j and is often used as an alternate way to define the 

variance.  The covariance matrix consists of all ordered pairs of the covariances.   



EFFICIENT ASSET MANAGEMENT   Page 2   

 

   

 

In the case of a –1 correlation between two assets (the extreme left-hand curve), it is possible to 

eliminate portfolio risk.  

 

EXHIBIT 2.1 

PORTFOLIO RISK AND RETURN: TWO ASSET CASE 

 

DEFINING MARKOWITZ EFFICIENCY  

 

Exhibit 2.1 shows that an appropriate set of portfolio weights may significantly reduce portfolio 

risk in many cases.  The notion of defining an optimal set of portfolio weights to optimize risk 

and return is the basis of Markowitz portfolio efficiency.  The efficiency criterion states: 

 

A portfolio P* is MV efficient if it has least risk for a given level of portfolio expected 

return.4    

 

The MV efficiency criterion is equivalent to maximizing expected portfolio return for a given 

level of portfolio risk:  

 

A portfolio P* is MV efficient if it has the maximum expected return for a given level of 

portfolio risk.5  

                                                           
4 Formally, portfolio P* is MV efficient if, for any portfolio P, P = P* implies P

2  > P*
2.   

5 Formally, Portfolio P* is MV efficient if, for any portfolio P, P
2  = P*

2  implies  P < P*. 
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Which formulation of portfolio efficiency is used is a matter of convenience.   

 

As Exhibit 1.1 indicates, each portfolio on the efficient frontier satisfies the efficiency criterion.  

The efficient frontier is monotone increasing in the mean as a function of increasing portfolio 

risk.  

 

OPTIMIZATION CONSTRAINTS 

 

Various linear constraints are generally included in an MV optimization. In practice, 

optimizations typically assume that portfolio weights sum to 1 (budget constraint)6 and are 

nonnegative (no-short-selling constraint).7  The budget condition is a linear equality constraint 

on the optimization.  The no-short-selling condition is a set of sign constraints or linear 

inequalities (one for each asset in the optimization).  The budget and no-short- selling 

conditions form a base case set of optimization constraints.  Many institutional portfolios satisfy 

base case assumptions.  In practice, an optimization often includes additional linear inequality 

and equality constraints, particularly for equity portfolios.  All the optimizations in the text 

assume budget and sign constraints. 

 

THE RESIDUAL RISK-RETURN EFFICIENT FRONTIER 

 

An often-used variation of classic Markowitz MV efficiency, which may be called benchmark 

optimization, is based on “residual” return.  (Given an appropriate benchmark, the difference 

between asset and benchmark return defines residual return.)  It is convenient to use the 

following notation for MV residual return efficiency.  Let, 

 

     = expected residual return 

    = residual return variance. 

 

The definition of Markowitz efficiency for residual return is precisely the same as before, with  

and  replacing  and .   

 

By definition, the benchmark has zero expected residual return and residual risk.  In many 

applications, a portfolio, such as an index, defines the benchmark.  Exhibit 2.2 illustrates the 

notion of MV residual return efficiency.  In this case, an investor with portfolio A wants to 

optimize expected residual return at the same level of residual risk.  The exhibit assumes that 

the benchmark return is a feasible portfolio.  The efficient frontier is the collection of all 

portfolios with maximum  for all possible levels of portfolio residual risk. 

 

EXHIBIT 2.2 

RESIDUAL RISK AND RETURN PORTFOLIO EFFICIENCY 

                                                           
6 In mathematical notation, the budget constraint implies that i wi = 1. 
7 In mathematical notation, wi  > 0,  for all portfolio assets. 



EFFICIENT ASSET MANAGEMENT   Page 4   

 

   

 

 

COMPUTER ALGORITHMS 

 

Several methods are available for estimating MV efficient portfolios.  The method used may 

depend on the constraints.  For example, an MV optimization that includes only linear equality 

constraints, such as the budget constraint, can be solved analytically with matrix algebra in a 

way similar to a linear regression.8  On the other hand, an MV optimization that includes linear 

inequality constraints, such as sign constraints, generally requires numerical analysis procedures 

for solution. 

 

"Quadratic programming" is the technical term for the numerical analysis procedure used to 

compute MV efficient portfolios in practice.  Quadratic programming algorithms allow 

maximization of expected return and minimization of the variance, subject to linear equality and 

inequality constraints.  The term quadratic refers to the variance in the optimization objective; 

programming refers to optimizations that include linear inequality as well as equality constraints.   

 

Many algorithms are used for computing MV efficient portfolios.  The choice may depend on 

convenience, computational speed, number of assets, number and character of constraints, and 

required accuracy.  Various tradeoffs govern the choice of the optimum algorithm for a given 

problem.9  In the optimization examples in this and following chapters, the modest number of 

assets allows for the use of an exact quadratic programming procedure.10    

 

                                                           
8 See, for example, Alexander and Francis (1986); Jobson and Korkie (1983).   
9 See the appendix at the end of this chapter. 
10 The procedure uses the simplex algorithm and active set method.   
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ASSET ALLOCATION VERSUS EQUITY PORTFOLIO OPTIMIZATION 

 

Asset allocation and equity portfolio optimization are the two most popular applications of MV 

optimization.  In both cases, the optimization finds optimal allocations of capital to maximize 

expected return and minimize risk subject to various linear constraints.  The underlying 

optimization issues in both cases are those illustrated in Exhibits 1.1 or 2.2.  There are, however, 

some noteworthy differences between asset allocation and equity portfolio optimization. 

 

In an asset allocation study, the number of risky assets rarely exceeds 50, and is typically in the 

range of 3 to 20.  The number of optimization constraints is often relatively minimal.  The 

assets generally include broad asset categories, such as U.S. equities and corporate and 

government bonds, international equities and bonds, real estate, and venture capital.  Sample 

means, variances, and correlations, based on monthly, quarterly, or annual historic data, may 

serve as starting points for optimization input estimates.11  In a benchmark-relative framework 

such as that shown in Exhibit 2.2, the residual return basis for optimization inputs often equals 

the difference between historic asset and index returns. 

 

For equity portfolio management, benchmark optimization (see Exhibit 2.2) is generally the 

framework of choice.  This is true because the measure of investment performance for 

institutional equity management is almost always benchmark-relative.  The benchmark return is 

usually related to the return of a representative market index.   

 

An equity portfolio optimization generally includes many securities.  Domestic equity 

optimizations typically include a 100 to 500 stocks.  International equity optimizations may 

include as many as 4,000 to 5,000 stocks.  Equity portfolio optimizations usually include many 

constraints on portfolio characteristics, industry or sector membership, and trading cost 

restrictions.   

 

The source of equity optimization inputs is normally very different from those in an asset 

allocation.  Sample means and covariances of historic returns are typically not the starting 

points for inputs in an equity portfolio optimization.  Modern financial theory provides a rich 

framework for defining expected and residual return for equities.12  In equilibrium, the expected 

return of a security is a function of its systematic risk.  High expected return may indicate high 

systematic risk and not mispricing.  The estimate of expected return associated with systematic 

risk generally derives from some version of the capital asset pricing model or arbitrage pricing 

theory.13 

 

Equity risk models provide useful estimates of the components of stock and portfolio residual 

risk shown in Exhibit 2.2.  In practice, institutional asset managers often use commercial risk 

measurement services to estimate security and portfolio residual risk.  Over- and under-pricing 

is associated with  or expected return net of systematic risk expected return.  The process of 
                                                           
11 See Chapters 8-11 for further discussion of input estimation. 
12 The two most influential modern financial theories of stock pricing are the Sharpe (1964)-Lintner (1965) capital 

asset pricing model (CAPM) and the Ross (1975, 1976) arbitrage pricing theory (APT). 
13 Commercial services may use a compromise version of an "expanded" or multi-beta CAPM that is similar to an 

APT framework to define systematic risk. 
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defining  for equity portfolio optimization is often a major undertaking and may be the primary 

investment focus of an equity management firm.  Many institutional asset managers employ 

stock valuation procedures based on sophisticated econometric analysis and techniques.14  

 

Another common application of MV optimizers for equity portfolio management is to define a 

tracking or index fund.15  In this case,  is zero and the optimizer finds the minimum 

risk-tracking portfolio given the constraints.  Without constraints or trading costs, the minimum 

tracking fund is the index.  For tracking funds, the efficient frontier in Exhibit 2.2 reduces to a 

point on the x-axis near or at the origin.   

 

For equity portfolios, estimation of  and security and portfolio residual risk, portfolio 

constraints, trading costs, the number of assets, and other issues of practical importance 

substantially increase the complexity of the optimization process.  In contrast, asset allocation 

typically reflects a much simpler and more convenient framework for the study of MV 

optimization.   

 

A GLOBAL ASSET ALLOCATION EXAMPLE 

 

Consider a global asset manager allocating capital to the following 8 major asset classes: U.S. 

stocks and government/corporate bonds, Eurobonds, and the Canadian, French, German, 

Japanese, and U.K. equity markets.  The historic data consists of 216 months of index total 

returns in U.S. dollars for all eight asset classes and for U.S. 30-day T-bills, from January 1978 

through December 1995.16  Table 2.1 provides the averages and standard deviations of the 

monthly data for the assets in this period.  

 

Table 2.1  Monthly Dollars (Net) Returns (Percentages), January 1978-December 1995 
 Canada France Germany Japan U. K. U. S. U.S. Bonds Euros 

MEAN 0.97 1.46 1.11 1.46 1.37 1.29 0.83 0.85 

STANDARD. DEVIATION. 5.47 7.00 6.19 7.01 5.99 4.28 1.99 1.52 

Note: U.S. 30-Day T-Bill Return.  Mean = 0.58, Standard Deviation = 0.24. 

 

Quadratic programming finds the optimal MV efficient frontier asset allocations under the 

assumptions.  Exhibit 2.3 displays the efficient frontier for the usual constraints.17  The graph 

                                                           
14 For a recent example see Michaud (1998). 
15 An index fund is a portfolio designed to track an index.  One simple method for defining an index fund is to 

include all the stocks in the index with index weights as portfolio weights.  In this case, optimization is not 

required.  Optimizers may be useful when constraints are required or liquidity issues are important. 
16 The data for the five equity markets – Canada, France, Germany, Japan, United Kingdom are Morgan Stanley 

Capital International U.S. dollar total return indices net of withholding taxes.  The U.S. equity data is S&P 500 

Index total returns.  The 30-day T-bill returns are from Salomon Brothers.  The two bond data indices are the 

Lehman Brothers government/corporate U.S bond indices and U.S. dollar Eurobond global indices.  The Lehman 

Brothers Eurobond Global Index was available from January 1978 to November 1994.  The Eurobond returns for 

the remaining months were from Lehman Bros. Eurobond Global Issues Index.  The limited availability of 

long-term Eurobond returns governed the choice of time period used in this example.  
17 Computing and displaying the efficient frontier in Exhibit 2-3, and in subsequent examples of efficient frontiers, 

means computing and displaying a set of points representing the mean and standard deviation of a representative set 

of efficient portfolios.  The procedure used computes 51 efficient portfolios, ranging from minimum variance to 
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displays annualized data.18  The exhibit includes plots and labels of the means and standard 

deviations of the eight assets. 

 

Because the French stock market index had the highest average monthly return, it is on the 

efficient frontier at the most northeast point of the curve. The Japanese market had nearly the 

same return and risk, and its plot in Exhibit 2.3 is nearly indistinguishable from that of France.  

The minimum risk portfolio is more than 98% Eurobonds, with 0.86% average monthly return 

and 1.52% monthly standard deviation.  Other points on the efficient frontier lie between these 

two extremes.  For example, the efficient frontier asset allocation with average monthly return 

1.24% and standard deviation 3.33% (roughly halfway between the largest and smallest return 

efficient portfolios) is composed of approximately 10% French, 20% Japanese, 5% U.K., and 

45% U.S. equities and 20% Eurobonds.   U.S. bonds significantly underperformed all other 

assets and an efficient portfolio for its level of risk.  In Exhibit 2.3, it is clear that the French, 

Japanese, United Kingdom and U.S. equity markets as well as Euro bonds are near or on the 

efficient frontier and performed well relative to their level of risk in this time period.  For many 

levels of risk, however, diversification was useful.   

 

REFERENCE PORTFOLIOS AND PORTFOLIO ANALYSIS 

 

Reference portfolios are often helpful in understanding the investment meaning of efficient 

frontiers.  They serve as useful guideposts for comparing the implications of alternative 

portfolios.  Table 2.2 defines three reference portfolios used in subsequent analyses of MV 

portfolio efficiency: index, current and equal weighted.  The index portfolio is roughly 

consistent with a capitalization-weighted portfolio relative to a world equity benchmark for the 

six equity markets.  The current portfolio represents a typical U.S.-based investor's global 

portfolio asset allocation.  The most significant differences between the index and current 

portfolios are the allocations to fixed income assets.  An equal-weighted portfolio is useful as a 

reference point.  

 

                                                                                                                                                                                           

maximum expected return portfolios.  A step function straight-line "fills in" between the computed points to 

graphically display the efficient frontier.  In general, the points chosen are equally spaced along the return axis of 

the efficient frontier.  The exception to this rule is for the last five efficient portfolios at the high-return end of the 

efficient frontier, where the standard deviation changes rapidly relative to changes in expected return.  In this case, 

very small changes in return map out the upper range of the efficient frontier. 
18 Twelve multiplies the average monthly returns, and the square root of 12 multiplies the monthly return standard 

deviations. 
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Exhibit 2.4 provides the results of including the reference portfolios in the efficient frontier 

analysis.  All the reference portfolios plot close to the efficient frontier and appear reasonably 

well diversified. 

 

Table 2-2 Reference Portfolios (%) 

 Canada France Germany Japan U.K. U.S. U.S. Bonds Euros 

INDEX 5 10 10 30 10 35 0 0 

CURRENT 5 10 0 20 15 20 20 5 

EQUAL 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 
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RETURN PREMIUM EFFICIENT FRONTIERS 

 

The return premium is the return minus the risk-free rate.  It is often convenient to use total 

return premiums, instead of total returns, as the basis of MV analysis in practice.  Return 

premiums are similar to real rates of return.  By removing the impact of varying risk-free rates, 

return premiums may be relatively more stable than total returns and more useful in a forecasting 

context.   

 

The total return premium is the U.S. dollar total return minus the U.S. dollar short-term interest 

rate in each period.  The monthly short-term interest rate for a U.S. dollar-based investor is 

usually defined as the U. S. T-bill 30-day return.  Table 2.3 displays the mean and standard 

deviation of the total monthly return premiums over the January 1978 to December 1995 period 

for the eight assets in Table 2.1.  Table 2.4 provides the correlations.  The data in Tables 2.3 

and 2.4 give a complete description of the input parameters required for MV optimization. 

 

Exhhibit 2.5 displays the MV efficient frontier associated with the historical return premium 

data.  Exhibit 2-5 and Tables 2-3 and 2-4 are the basis of most of the examples illustrated in the 

text. 
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Table 2.3 Monthly Dollar (Net) Return Premium Returns (Percentages), January 1978-December 

1995 

 Canada France Germany Japan U.K. U.S. U.S. Bonds Euros 

MEAN 0.39 0.88 0.53 0.88 0.79 0.71 0.25 0.27 

STANDARD DEVIATION 5.50 7.03 6.22 7.04 6.01 4.30 2.01 1.56 

 

Table 2.4 Asset Correlations Monthly Dollar (Net) Return Premium Returns (Percentages) 

January 1978-December 1995 

 Canada France Germany Japan U.K. U.S. U.S. Bonds Euros 

Canada 1.00 0.41 0.30 0.25 0.58 0.71 0.26 0.33 

France 0.41 1.00 0.62 0.42 0.54 0.44 0.22 0.26 

Germany 0.30 0.62 1.00 0.35 0.48 0.34 0.27 0.28 

Japan 0.25 0.42 0.35 1.00 0.40 0.22 0.14 0.16 

U. K. 0.58 0.54 0.48 0.40 1.00 0.56 0.25 0.29 

U. S. 0.71 0.44 0.34 0.22 0.56 1.00 0.36 0.42 

U.S. Bonds 0.26 0.22 0.27 0.14 0.25 0.36 1.00 0.92 

Euros 0.33 0.26 0.28 0.16 0.29 0.42 0.92 1.00 
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APPENDIX:  MATHEMATICAL FORMULATION OF MV EFFICIENCY 

MEAN-VARIANCE EFFICIENCY 

 

Let: N = Number of assets or securities in the universe 

 w = vector of portfolio weights of the N assets 

  = vector of expected returns of the N assets 

  = covariance matrix of the N assets 

 1 = vector of ones of length N. 

  

By definition, the mean and variance of a portfolio P with weights wP is: 

 

    P = wP' *  

    P
2 = wP' *  * wP 

 

where w' denotes the transpose of the vector w. 

 

If portfolio P is MV efficient for a given level of portfolio expected return *, then it satisfies the 

following conditions:   

 

 minimize:      wP' *  * wP 

 

 subject to the constraint:     wP' *  = *. 

 

In many cases of practical interest, the portfolio weights are further constrained to sum to 1,  

     wP'* 1= 1 

 

and to have non-negative values   w > 0. 

PARAMETRIC QUADRATIC PROGRAMMING AND MV EFFICIENCY 

 

“Parametric” quadratic programming is a useful alternative formulation of MV efficiency.   In 

this case, a parameter "" (lambda) is introduced into the description of the optimization.  the 

condition that identifies the efficient portfolios is to minimize  (phi) 

     = P
2 -  P 

for a given value of  subject to the associated linear equality and inequality constraints.  This 

formulation of MV optimization leads to efficient computation of the entire MV efficient 

frontier.19   

 

To show how this works, it is convenient to introduce the concept of a "pivot point" or  

“corner portfolio” on the efficient frontier.  Technically, corner portfolios are efficient frontier 

                                                           
19 Early successful parametric quadratic programming methods include the critical-line algorithm of Markowitz’ 

(1956) and Beale (1955).   For an extensive up-to-date discussion of the critical-line algorithm see Markowitz 

(1987).  Computational methods based on the simplex algorithm include Beale (1959), Frank and Wolfe (1956), 

and Wolfe (1959).   
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portfolios that represent transition points, where at least one of the inequalities in the 

optimization either becomes binding or is no longer binding on the solution.  Less technically, a 

corner portfolio is an efficient portfolio in which an asset either enters or leaves the set of 

efficient portfolios in a neighborhood of the corner portfolio.20  

 

Corner portfolios are important for computing the efficient frontier due to the following 

technical property: if w* and w** are vectors representing weights of portfolios on the efficient 

frontier, then a portfolio formed from the convex sum of the two portfolios -- c*w* + (1-c)*w**
 , 

0 < c < 1 – is also a MV efficient portfolio if no corner portfolio exists between w* and w**.  

Consequently, the efficient frontier between w* and w** is computable simply from knowing the 

composition of two distinct efficient portfolios, when corner portfolios do not exist between 

them.  Parametric quadratic procedures find the values of  associated with the corner 

portfolios.  It is therefore possible to compute all corner portfolios and thereby the entire 

efficient frontier exactly and efficiently using parametric quadratic programming methods.  This 

approach is often more efficient than simply computing a large number of portfolios across the 

length of the efficient frontier.  

 

Parametric quadratic programming is conceptually interesting because it provides a deeper 

understanding of the nature of the efficient frontier.  In many practical applications, however, 

computing efficient portfolios at specific values of portfolio expected return or risk is often of 

primary interest, and parametric quadratic programming of the efficient frontier is a luxury. 

EXACT VS. APPROXIMATE MV OPTIMIZERS 

 

The choice of an MV optimization algorithm may often depend on the computational speed and 

accuracy required.  In cases such as equity portfolio optimization, only a single point on the 

efficient frontier may be of interest and an approximate optimal solution may be sufficient.  In 

many cases, commercial equity portfolio optimizers optimize computational speed using 

algorithms that are single-point approximations to efficient frontier portfolios.  However, when 

practical, quadratic programming algorithms that compute exact solutions remain the algorithms 

of choice.  Useful enhancements are available for the exact quadratic programming solution of 

relatively large-scale optimization problems in the presence of factor models (Perold 1984).  In 

addition, recent developments in computational power and algorithmic sophistication may soon 

eliminate many of the practical benefits of approximate optimization algorithms, even for large 

international equity portfolios. 

                                                           
20 See Sharpe (1970) for a more leisurely exposition. 
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CHAPTER 3 TRADITIONAL CRITICISMS AND ALTERNATIVES 

 

Many authors have raised serious objections to mean-variance (MV) efficiency as a framework 

for defining portfolio optimality and have proposed a number of alternatives.  Most of the 

alternatives can be classified in one of five categories: (1) nonvariance risk measures; (2) utility 

function optimization; (3) multiperiod objectives; (4) Monte Carlo financial planning; (5) linear 

programming.  Analysis shows that the alternatives often have their own serious limitations and 

that MV efficiency is far more robust than is appreciated.  Although they are symptomatic of an 

underlying unease with MV efficiency, none of the proposals address the basic limitations of 

MV optimization. 

 

ALTERNATIVE MEASURES OF RISK 

 

In MV efficiency, the variance, or standard deviation, of return is the measure of security and 

portfolio risk.  The variance measures variability above and below the mean.  From an 

investor’s point of view, the variance of returns above the mean is often not “risk.”  One 

obvious and intuitively appealing nonvariance measure of risk, discussed as early as Markowitz 

(1959), is the semivariance or semistandard deviation of return.  In this risk measure, only 

returns below the mean are included in the estimate of variability.   

 

The semivariance is an example of a "downside" risk measure.  In this case, "downside" risk is 

relative to the average or mean of return.  There are many other ways to measure "downside" 

risk.  A simple example is replacing average return with a specified level of return, such as zero 

or the risk-free rate.   

 

Many other nonvariance measures of variability are also available.  Some of the more important 

include the mean absolute deviation and range measures.  The pros and cons of various risk 

measures depend on the nature of the return distribution.   

 

The return distribution of an asset or portfolio depends on several factors.  Because the returns 

of diversified equity portfolios, equity indexes, and other assets are often approximately 

symmetric over periods of institutional interest, efficiency based on nonvariance risk measures 

may be nearly equivalent to MV efficiency.   

 

An important issue is whether, in practice, nonvariance risk measures lead to significantly 

different efficient portfolios.  Exhibit 3.1 provides an illustration, comparing the MV efficient 

frontier in Exhibit 2.5 with a mean-semivariance efficient frontier based on the same historic 

data.  As Exhibit 3.1 shows, the two efficient frontiers are virtually identical, except at the 

low-risk end.  The differences at low risk reflect the fact that bond returns are less symmetric 

than equities.  Many currently fashionable risk alternatives have similar efficient frontier 

characteristics.   
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Some asset classes, such as options, do not have return distributions that are approximately 

symmetric.  The return distributions of fixed-income indexes are not as symmetric as many 

equity asset classes.  In addition, the return distribution of diversified equity portfolios becomes 

increasingly asymmetric over a long-enough period.  Consequently, the variance measure for 

defining portfolio efficiency is not always useful or appropriate.  For many applications of 

institutional interest, however, a variance-based efficient frontier is often little different (and 

even less often statistically significantly different) from frontiers that use other measures of risk.  

It is also generally, a lot more convenient, especially when deriving statistical properties of 

efficient frontiers, as is done later in the book. 

 

UTILITY FUNCTION OPTIMIZATION  

 

For many financial economists, maximizing expected utility of terminal wealth is the basis for all 

rational decision making under uncertainty.  The issue of interest is whether Markowitz MV 

efficiency is consistent with expected utility maximization.  If it is not, perhaps optimization 

based on specific utility functions should replace MV efficiency. 

 

Markowitz MV efficiency is strictly consistent with expected utility maximization only under 

either of two conditions: normally distributed asset returns or quadratic utility functions.  The 

normal distribution assumption is unacceptable to most analysts and investors.  Although 
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diversified equity portfolio and index returns are often reasonably symmetric, their distribution is 

not precisely normal.  In addition, the limitations of quadratic utility as a representation of 

investor behavior are well known.1  Consequently, MV efficiency is not strictly consistent with 

expected utility maximization.   

 

One alternative is to define portfolio optimality in terms of optimizing specific utility functions.  

Many analysts have suggested that utility functions are a more rational basis for investor 

decision making and portfolio structuring.  Utility function optimizations need not resemble MV 

efficient portfolios.   

 

There are, however, significant practical limitations to using utility functions as the basis of 

defining an optimization.  One obvious limitation is the feasibility and viability of practical 

algorithms for computing optimal portfolios.  Depending on functional form, nonlinear 

optimization methods may be required that may have significant limitations in many 

applications.   

 

An equally important limitation of the utility function approach to portfolio optimization is 

utility function specificity.  In practice, investor utility is unknown.  The lack of specificity of 

the investor’s utility function is a far more daunting practical problem than it may appear.  This 

is because a class of utility functions can have similar functional forms, perhaps differing in the 

value of only one or two parameters, yet represent a very wide, even contradictory, spectrum of 

risk bearing and investment behavior (Rubinstein 1973).  In these cases, even small errors in the 

estimation of utility function parameters can lead to very large changes in the investment 

characteristics of an optimal portfolio.  As a practical matter, the problem of specifying with 

sufficient accuracy the appropriate utility function for a given investor appears to be a severe 

practical limitation of utility function-based portfolio optimization.   

 

On the other hand, MV efficiency is rationalizable as a convenient approximation of expected 

utility maximization.  For nonpathological utility functions, quadratic utility functions are often 

useful approximations of maximum expected utility at a point.2  Note that the 

best-approximating quadratic function may not be the same at different points of the expected 

utility function.  Consequently, MV efficient portfolios are often good approximations of 

maximum expected utility and a practical framework for portfolio optimization (Levy and 

Markowitz 1979; Kroll, Levy, and Markowitz 1984; Markowitz 1987, chapter 3). 

 

The use of utility functions in defining portfolio optimality often divides practitioners from 

academics.  From a rigorous point of view, only the specification of an appropriate utility 

function will do for defining portfolio optimality.  However, few practitioners use nonquadratic 

utility functions to find optimal portfolios.  Given the difficulty of estimating utility functions 

with sufficient precision, the convenience of quadratic programming algorithms, and the 

robustness of the approximating power of quadratic utility at a point, MV efficiency is often the 

practical tool of choice. 

                                                           
1 Because a quadratic function is not monotone increasing as a function of wealth, from some point on, expected 

quadratic utility declines as a function of increasing wealth.  Quadratic utility functions are primarily useful as 

approximations of expected utility maximization, usually in some particular region of the wealth spectrum.   
2 The result is Taylor's theorem for a continuous and sufficiently smooth utility function. 
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MULTIPERIOD INVESTMENT HORIZONS  

 

Markowitz MV efficiency is formally a single-period model for investment behavior. Many 

institutional investors, however, such as endowment and pension funds, have long-term 

investment horizons on the order of 5, 10, or 20 years.  How useful is MV efficiency for 

investors with long-term investment objectives? 

 

One way to address long-term objectives is to base MV efficiency analysis on long-term units of 

time.  MV efficiency, however, is probably most appropriate for relatively short-term periods.  

This is true because a quadratic approximation of maximum expected utility is most likely to be 

valid for monthly, quarterly, or yearly periods.  In addition, lengthening the unit of time reduces 

the number of independent periods in a historic data set and the statistical significance of 

optimization parameter estimates.  On the other hand, increasing the historic data period may 

diminish the relevance of the estimates for the forecast period.  

 

An alternative approach is to consider the multiperiod distribution of the geometric mean of 

return.  The geometric mean, or compound, return is the statistic of choice for summarizing 

portfolio return over multiple periods.3  

 

Assume that, in each period, MV efficiency defines optimal portfolio choice.  Also assume that 

the distribution of single-period return does not vary (appreciably) over the multiperiod 

investment horizon.  What are the long-term consequences of repeatedly investing in MV 

efficient portfolios?   

 

Some essential results are due to Markowitz (1959, ch. 6).  He shows that (1) MV efficient 

portfolios need not be efficient in the long run, and (2) long-term efficiency is not necessarily 

monotonic in portfolio risk.  In particular, MV efficient portfolios on the upper segment of the 

efficient frontier may be less long-term efficient than portfolios with less risk.4 

 

Hakansson (1971a) gives an example of an MV efficient frontier in which repeated investing 

produces a negative long-term geometric mean at all points.  This example shows that all MV 

efficient frontier portfolios may lead to ruin with probability equal to 1 over long-enough 

investment horizons.  However, the Hakansson example is neither typical nor likely.   

 

Further analysis of the geometric mean criterion is useful.5  The mean and variance of N-period 

geometric mean return is a natural N-period generalization of Markowitz efficiency.6  Various 

                                                           
3  Suppose an investor experiences a 100% return in one period and a -50% return in the next period.  The 

two-period average return is 25%, but the two-period wealth is the same as at the beginning.  Therefore, the true 

multiperiod return is 0%.  The geometric mean provides the correct answer, while the average does not.   
4 Markowitz' use of the phrases "return in the long-run" and "long-term return" refer to the almost sure limit of 

geometric mean return as the number of periods becomes large.   
5 Much of the following discussion follows Michaud (1981). 
6 It may be fitting to call the objective Hakansson efficiency, after the researcher who has done much of the 

pioneering work in this area.   
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approximations show that portfolios on the (single-period) MV efficient frontier are often good 

approximations of N-period geometric mean efficient portfolios.7  Consequently, N-period 

geometric mean MV efficiency is roughly a special case of MV efficiency in many cases of 

practical interest. 

 

Define the critical point as the MV efficient portfolio with the maximum N-period expected 

geometric mean return.  The critical point is a useful construct for understanding and using 

N-period geometric mean efficiency.  The N-period expected geometric mean is a positive 

function of the mean of (single-period) expected return and a negative function of the variance.  

Consequently, the critical point defines the boundary of portfolios on the lower segment of the 

MV efficient frontier that are N-period geometric mean MV efficient and those on the upper 

segment that are not.  N-period horizon MV efficiency leads to the simple decision rule of 

considering only MV efficient portfolios on the lower segment of the efficient frontier up to the 

critical point efficient portfolio.8  Note that critical points that are not end points of the MV 

efficient frontier do not always exist. 

 

A number of analysts have raised objections to the geometric mean as an investment criterion.  

In particular, a significant controversy emerged from the proposal of using the (long-term) 

expected geometric mean as a surrogate for expected utility (Hakansson 1971b).  This 

controversy, although it is beyond the scope of this discussion, is essentially concerned with the 

limitations of using any investment rule, however attractive, as an alternative to expected utility 

maximization.  The opposing view concerns the limitations of using utility functions in practice 

and the value of the MV geometric mean criterion as a convenient source of useful investment 

information.9  MV geometric mean investment objectives are often consistent with many 

institutional investment mandates.  

 

One more issue may be of interest.  The assumption has been that the investor repeatedly invests 

in the same efficient frontier portfolio over some investment horizon.  However, optimal 

multiperiod investment with a MV geometric mean objective is a dynamic programming strategy 

that implies varying the choices of MV efficient portfolios in each period (Michaud and 

Monahan 1981). 

 

Multiperiod considerations are important issues for investors with long-term investment 

objectives.  To avoid possible negative long-term consequences of MV efficiency, a simple 

solution is to limit consideration to efficient frontier portfolios at or below the critical point.  As 

a useful approximation, it is convenient to consider long-term efficient portfolios as a subset and 

a special case of MV efficiency.   

 

                                                           
7 For example, Young and Trent (1969) and Michaud (1981, appendix).  Approximation accuracy depends on 

assumptions that are often satisfied in practical applications.   
8 One simple procedure is to find the MV efficient portfolio with the maximum value of an MV approximation to 

the N-period geometric mean using a search algorithm of all portfolios on the efficient frontier.  Michaud (1981) 

provides three analytic formulas for estimating the efficient frontier critical point for the special case of portfolios 

on the capital asset pricing model (CAPM) market line. 
9 See Markowitz (1976) and Michaud (1981) for further discussion and many additional references. 



EFFICIENT ASSET MANAGEMENT   Page 6   

 

   

 

ASSET-LIABILITY FINANCIAL PLANNING STUDIES 

 

Many financial institutions invest substantial resources in defining an appropriate long-term 

average asset allocation or investment policy.10  They do this because the long-term average 

asset allocation is one of the most important investment decisions an institution or investor can 

make.11  The importance of defining an optimal investment policy has spurred alternative 

approaches to MV efficiency analysis.  Probably the most important of these is an asset-liability 

financial planning study based on Monte Carlo simulation.   

 

In a Monte Carlo financial planning study, a computer model simulates the random functioning 

of a fund and changes in its liabilities over time.12  Estimates of likely cash flows and funding 

status result from performing many simulations.  By varying asset return and allocation 

assumptions, the simulation can evaluate the implications of various asset allocation decisions on 

the evolution of funding status and cash flows.  Endowment fund simulations can provide useful 

information on likely levels of endowment spending and fund value over time.  Similarly, 

defined benefit pension plan simulations can be useful for anticipating required contributions and 

plan funding status for various assumptions and investment periods.13   

 

The important issue is whether Monte Carlo asset-liability financial planning is a superior 

alternative to MV efficiency for defining an optimal asset allocation.  Proponents argue that 

plan funding status and cash flow objectives are more meaningful than the MV efficiency of a 

feasible portfolio.  The anticipation of likely cash flows and required contributions can provide 

valuable fund planning information.  The problem is that such information may have relatively 

limited usefulness for defining an optimal long-term asset allocation. 

 

Generally, only feasible MV efficient frontier asset allocations are of interest.  This is because 

feasible allocations with more expected return for a given risk level are almost always 

preferable.  Consequently, a valid Monte Carlo asset-liability simulation study generally 

requires MV efficiency analysis to determine candidate efficient allocations.  Within the context 

of feasible efficient allocations, consider the consequences of varying asset mixes.  In general, 

the Monte Carlo results show that riskier efficient asset mixes lead to a greater likelihood of 

meeting or exceeding funding objectives and of increasing volatility.  Evaluating the tradeoffs 

associated with funding status and cash flow volatility in various time periods is often of no less 

difficulty than evaluating the risk-return tradeoffs in an efficient frontier context.  Monte Carlo 

                                                           
10 Such projects can involve a number of consultants and substantial expenditures. 
11 There is a significant controversy on the degree of importance of the long-term asset allocation decision.  Some 

authors (e.g., Brinson, Hood, and Beebower 1986) argue that the long-term asset allocation may account for more 

than 90% of investment results.  More recent studies, (e.g., Hensel, Ezra, and Ilkiw 1991) find that investment 

policy, active asset allocation, and active stock selection are roughly equally comparable in importance.  At a 

minimum, most analysts agree that investment policy is at least as important as any other class of investment 

decisions. 
12 Depending on the study and application, the liability model may be very detailed.  For a defined benefit plan, it 

can include a comprehensive examination of corporate objectives, economic projections, and future hiring policy as 

well as current workforce census.  In some cases, liability modeling may affect asset allocation decisions in terms 

of feasibility, particularly for regulated firms, such as insurance companies.   
13 Michaud (1976) provides a detailed example of the Monte Carlo financial planning process for defined benefit 

pension plans.   
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simulation studies do little more than illustrate the simple principle that, for feasible efficient 

portfolios, more risk leads to more return on average, and more volatility. 

 

There is an exception to these basic principles governing Monte Carlo asset-liability financial 

planning simulation.  Analysts have seen that increasing efficient portfolio risk does not always 

lead to increased average return.  Such results appear to rationalize the importance of the Monte 

Carlo procedure relative to MV efficiency analysis.  However, the discussion in the previous 

section can help to explain this result.   

 

Monte Carlo simulation studies generally assume repeated investment in MV efficient frontier 

portfolios.  If an efficient frontier has an internal critical point, efficient asset allocations on the 

long-term inefficient segment of the efficient frontier will exhibit the behavior that increasing 

risk leads to decreases in the ability of the fund to meet objectives.  In many cases, such results 

can be anticipated analytically by computing the critical point of the efficient frontier and 

analyzing N-period geometric mean efficiency.  However, the issue is more than simply a tool 

for rationalizing the results of a simulation study.  The N-period geometric mean implications of 

asset return assumptions are the engine that drives the simulations and can lead to predefined 

conclusions. 

 

Monte Carlo asset-liability simulation has many uses as a tool for financial planning.  It is 

useful for understanding the likelihood of meeting funding objectives and likely cash flows 

associated with various fund investments and allocations.  The procedure has limited value, 

however, as an alternative to MV efficiency for defining an optimal asset allocation.  Many of 

its asset allocation benefits are analytically anticipatable in terms of the mean and variance of the 

multiperiod geometric mean distribution.  On the other hand, the analytic tools for 

understanding the geometric mean distribution as a function of the MV efficient frontier 

portfolios over an N-period investment horizon can be useful for designing effective Monte 

Carlo simulation financial planning studies (Michaud 1981). 
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LINEAR PROGRAMMING OPTIMIZATION 

 

The practical limitations of MV optimization as a tool of equity portfolio management have been 

familiar to many astute asset managers for many years.  One common alternative is to optimize 

portfolios with linear programming.14   

   

Linear programming portfolio optimization is a special case of quadratic programming.  The 

most significant difference is that linear programming does not include portfolio variance.  In 

this procedure, the objective is to maximize expected equity portfolio return subject to a variety 

of linear equality and inequality constraints on portfolio structure.  The procedure relies heavily 

on clever use of constraints on industries, sectors, and stock weights to control portfolio risk and 

maximize expected return.  The constraints also serve to design portfolios with various specific 

characteristics and objectives.   

 

In the hands of a sophisticated analyst, linear programming is an optimization technique that 

may avoid many of the fundamental limitations of equity portfolio MV optimization.  It has its 

own limitations, however.  In practice, it is difficult to control the structure of a portfolio 

precisely.  From a theoretical point of view, only an MV optimization framework can optimally 

use active forecast information (Sharpe 1985, 666-70).  The issue remains whether any linear 

programming approach is to be preferred to a carefully defined, input-adjusted, MV 

optimization.  The problems that most limit the practical value of MV optimization may be 

more attributable to the return than to risk dimension, which suggests that the linear 

programming alternative may ultimately be of limited value.  

 

A somewhat obvious final issue may be worthy of note.  A number of investment institutions 

use far less sophisticated optimization procedures than linear or quadratic programming.15  

These "homemade" optimization alternatives are often not the product of a conscious effort to 

avoid MV optimizer limitations but reflect a lack of analytic sophistication in the organization.  

Technical limitations in an optimization algorithm are unlikely to enhance the investment value 

of a portfolio over standard procedures.   

 

                                                           
14 See, for example Farrell, (1983, 168-74). 
15 Linear programming generally finds exact solutions under the assumptions.  However, some institutions use 

optimization approximations that may have additional limitations.   
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CHAPTER 4 UNDERSTANDING MV EFFICIENCY 

 

Mean-Variance (MV) optimization has severe limitations as a tool of investment management.  

Some limitations can be explained by various institutional practices, including suboptimal input 

estimation, incomplete or inappropriate optimization frameworks, poorly constructed forecasts, 

and errors caused by misunderstanding how optimization algorithms work.  These and related 

subjects are addressed in subsequent chapters.  This chapter describes and addresses the 

implications of the source of the fundamental limitations of MV efficiency for practical 

investment management and provides a context for many of the tools that follow.  

 

THE FUNDAMENTAL LIMITATIONS OF MV EFFICIENCY 

 

The most serious practical limitations of MV efficiency are instability and ambiguity.  Small 

changes in input assumptions often lead to large changes in the optimized portfolio.  

Anecdotally, many investment practitioners have known of the instability and ambiguity of MV 

optimization and the unintuitive investment character of optimized portfolios since quadratic 

programming procedures became available.1  The operative question is not whether MV 

optimizations are unstable or unintuitive, but rather, how serious is the problem?   

Unfortunately, for many investment applications, it is very serious indeed. 

 

J.D. Jobson and Bob Korkie wrote the classic pioneering studies on the instability and ambiguity 

of MV optimization and its investment implications.  In 1989, they made analytic estimates of 

the biases produced by MV optimizers and showed that the biases can be very large.  In 1981, 

they used Monte Carlo techniques to simulate the behavior of an MV optimizer.2  For a given 

set of historic data for 20 stocks and 60-month estimation periods, they found that the simulated 

MV efficient frontiers had an average maximum Sharpe ratio of 0.08.3   This result contrasts 

with the true Sharpe ratio for the data (0.32) and the Sharpe ratio of an equal-weighted portfolio 

(0.27).  The Jobson and Korkie results put to rest the fallacy that MV optimized portfolios are 

                                                 
1 The author began using the MIT-Rand QP (parametric quadratic programming) Fortran subroutine in investment 

research in 1973.   
2 The Jobson and Korkie Monte Carlo simulation experiment is an example of data resampling or bootstrapping.  

Data resampling methods have become increasingly important in modern statistics.  See Judge, et. al. (1988), 

416-19 for a brief overview and Efron and Tibshirani (1993) for a comprehensive authoritative description.  One 

important reason that simulation is so useful is that it can represent an out-of-sample test of the investment 

performance of MV optimized portfolios assuming that the inputs are relevant for the investment horizon of interest.  

Alternative methods generally have to deal with the additional issue of changes in the underlying return distribution. 
3 Jobson and Korkie's (1981) Monte Carlo simulation procedure is as follows: A set of means, standard deviations, 

and correlations of monthly returns for 20 stocks, estimated over some historic period, is assumed to be the true 

state of nature.  Monte Carlo simulations of the historic data simulate 60- or 100-month returns for each asset.  

From the simulated returns, compute the simulated optimization inputs -- means, standard deviations and 

correlations of the 20 stocks – and associated efficient frontier maximum Sharpe ratio portfolios.  Repeat this 

procedure many times.  Because the simulated data has statistical error, each simulated efficient frontier is unlikely 

to be the true efficient frontier, and the estimated maximum Sharpe ratio portfolio varies with each simulation.  

Now compare the average Sharpe ratio for the simulated maximum Sharpe ratio portfolios to the actual maximum 

Sharpe ratio and the Sharpe ratio of an equal-weighted portfolio for the historic data.   
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somehow better than others even though they are difficult to understand.  MV optimized 

portfolios are hard to understand because they often do not make investment sense and do not 

have investment value.   

 

Proper interpretation of the implications of Jobson and Korkie’s results for institutional asset 

management requires an important qualification.  Their optimized portfolios are not 

sign-constrained.  Most institutional equity portfolios are short-selling-constrained.  As 

demonstrated in the next section, a short-selling constraint significantly reduces the magnitude of 

the poor performance of optimized portfolios.  Consequently, typical institutional portfolios 

moderate, but do not invalidate, the Jobson and Korkie results.  Their results also show the 

importance of imposing financially meaningful constraints on the optimization process when 

available.4    

 

REPEATING JOBSON AND KORKIE 

 

To provide a baseline for the results that follow, it is useful to repeat the Jobson and Korkie 

experiment for the data in Tables 2.3 and 2.4.5,6  For sign-unconstrained portfolios, the true 

maximum Sharpe ratio for the data is 0.253.7   Replicating the 216-month historical estimation 

period, the average of the Sharpe ratios for 500 simulations of the eight-asset data is 0.200.8  

This value is 20% less than the true value. 

 

Jobson and Korkie use 100 and 60 month estimation periods.  Replicating Jobson and Korkie 

with 500 simulations and the eight-asset data, the average Sharpe ratios for 100 estimation 

periods is 0.157 and for 60 periods is 0.128.9  The results show that shorter estimation periods 

                                                 
4 This is the recommendation in Frost and Savarino (1988). 
5  Jobson and Korkie (1981) use the following formula for computing the simulated maximum Sharpe ratio 

portfolios: smean*inv(scov), where smean is the row vector for the Monte Carlo simulated means and inv(scov) is 

the inverse of the simulated covariance matrix.  The reward-to-risk ratio using the means and covariances of Tables 

2.3 and 2.4 is the measure of the performance of the simulated Sharpe ratio optimal portfolios. The simulated 

portfolios in this case are not short-selling-constrained.  The simulated portfolios produced by the formula are 

unlikely to satisfy the budget constraint.  Dividing the portfolio weights by their sum normalizes the portfolio so 

that it satisfies the budget constraint.  However, the reward-to-risk ratio before and after normalization may be 

different if the sum of the weights is negative.  The alternative used here is to ignore simulated portfolios when the 

sum of the weights is negative. 
6  The simulated returns are multivariate normally distributed.  The algorithm used in the results reported is 

mvnrnd.m from Mathworks. Tests using nonparametric (bootstrapping) and parametric (multivariate normal) 

resampling found results that were essentially the same.   
7 Note that for return premium data, the portfolio Sharpe ratio is the same as the reward-to-risk ratio and is equal to 

the portfolio mean divided by the standard deviation.   
8  The distribution of the reward-to-risk ratios of the simulated portfolios is of investment interest. The fifth 

percentile maximum Sharpe ratio is 0.138, the ninety-fifth percentile is 0.238, the minimum value is 0.088, and the 

maximum value is 0.248.  The Sharpe ratios have a skew value of –1.08, indicating that, when error maximization 

negatively affects the optimized portfolio, the effect may very serious.  The relatively large skew value is a function 

of the small number of assets in the example.  Larger numbers of assets lead to less skew in the distribution of the 

maximum Sharpe ratios, all other things being equal.   
9 The reported numbers are an average of the results of four 500 resampled simulations.  There was negligible 

variance in the estimates.   
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have a significant impact on increasing estimation error and reducing the average performance of 

optimized portfolios, all other things being the same.   

 

Although the simulations find serious degradation in average investment performance for 

sign-constrained optimized portfolios with the eight-asset data, the results are not as negative as 

those found by Jobson and Korkie.  Apart from the data itself, the smaller number of assets also 

helps to reduce the amount of error maximization observed relative to Jobson and Korkie’s 

study.   

 

IMPLICATIONS OF JOBSON AND KORKIE ANALYSIS 

 

MV optimization is a highly error-prone framework.  Optimization inputs are always subject to 

estimation error.  The fundamental source of the problem is that MV optimized portfolios are 

"estimation-error maximizers” (Michaud 1989a).  MV optimization significantly overweights 

(underweights) those securities that have large (small) estimated returns, negative (positive) 

correlations, and small (large) variances.  These securities are, of course, the ones most likely to 

have large estimation errors.  The error maximization effect is the fundamental source of the 

unintuitive character of MV optimized portfolios.  Essentially, the algorithm is too powerful for 

the level of information often available in investment data. 

 

Portfolio optimization may often reduce performance even when forecast information is 

significant.  Such results rationalize the behavior of many institutional investors, who have 

experienced the limitations of MV optimized portfolios firsthand and have voted with their feet 

by abandoning the procedure for other, less error-prone, alternatives.  

 

THE STATISTICAL CHARACTER OF MV EFFICIENCY 

 

To enhance the value of MV optimization, it is necessary to understand the source of the 

instability and ambiguity identified by Jobson and Korkie.  The key is to see that MV 

optimization is essentially a statistical procedure rather than one of numeric computation.  It is 

similar in many respects to constrained linear regression.  Misunderstanding of the statistical 

nature of MV efficiency has led to many counterproductive or suboptimal investment practices.  

On the other hand, recognition of its statistical character can lead to procedures that may 

significantly improve its investment value. 
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EFFICIENT FRONTIER VARIANCE 

 

An analysis of the statistical characteristics of MV efficiency may usefully begin with a 

description of the variability in the procedure.  Consider the question: Does the efficient frontier 

have a variance?  Initially, the question may appear frivolous: How can a curve have a variance?  

On reflection, however, the question is less obviously frivolous.  An MV efficient frontier is a 

computation based on statistically estimated parameters.  Consequently, it must have a variance.  

The question is how to estimate the variance. 

 

Analytic solutions are available for the variance of the efficient frontier that include only linear 

constraints (Jobson 1991).  In many situations of institutional interest, however, the 

optimization includes sign and other linear inequality constraints.  In these cases, a variant of 

the Jobson and Korkie Monte Carlo simulation is the procedure of choice.  

 

THE STATISTICAL EQUIVALENCE REGION 

 

The idea for estimating the variance of an efficient frontier is to use the Jobson and Korkie 

resampling procedure to compute “statistically equivalent” efficient frontiers from the 

optimization inputs.  The collection of resampled statistically equivalent efficient frontiers 

shows the variability implicit in efficient frontier estimation. 

 

More specifically, for the efficient frontier in Exhibit 2.5, the data resampling simulation 

proceeds as follows:  

 

1. Monte Carlo simulate 18 years of monthly returns based on the data in Tables 2.3 and 2.4 

for the eight asset classes.   

2. Compute optimization input parameters from the simulated return data. 

3. Compute efficient frontier portfolios that satisfy the same constraints as those in Exhibit 

2.5.10 

4. Repeat steps 1-3 500 times.11  By definition, each simulated efficient frontier is 

statistically equivalent to the efficient frontier in Exhibit 2.5. 

5. To observe the variability in the efficient frontier estimation process, evaluate the mean 

and standard deviation of the simulated efficient frontier portfolios based on the 

optimization parameters in Tables 2.3 and 2.4. 

 

Exhibit 4-1 displays the original Exhibit 2.5 efficient frontier and the 500 statistically equivalent 

resampled efficient frontier portfolios.  The area occupied by the simulated efficient frontier 

portfolios is the MV efficient frontier “statistical equivalence” region.12  The simulated efficient 

frontier portfolios never plot above the original efficient frontier.  If no variability existed, the 

                                                 
10 As described in Chapter 2, this means computing 51 efficient portfolios, ranging from the minimum variance to 

the maximum expected return portfolios, satisfying base case constraint assumptions.   
11 Unless otherwise noted, the all simulations that follow assume 500 efficient frontier replications. 
12 The concept of the “statistical equivalence” region, discussed in Michaud (1989a), has important antecedents in 

the work of Jobson and Korkie (1981).  Also, see Jobson (1991) and Jorion (1992). 
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simulated efficient frontiers would be the same as Exhibit 2.5.  To the extent that variability 

exists, the simulated efficient frontier portfolios vary from those in Exhibit 2.5 and plot below 

the original efficient frontier.  

 

 

Exhibit 4.1 dramatically illustrates the enormous, even startling, variability implicit in efficient 

frontier portfolio estimation.  Very wide ranges of portfolios are statistically equivalent to the 

efficient frontier.  Indeed, it is unclear what reasonable portfolio is excludable from the set of 

statistically equivalent efficient portfolios.13  The results highlight the importance of a statistical 

understanding of MV optimization. 

 

Note that a simulated MV efficient frontier is not necessarily consistent with efficient frontier 

intuition and may not monotonically increase in expected return with increasing risk.  For 

example, a given simulation may result in German equities having the highest average return.  

In this case, the simulated efficient frontier curves “down,” towards the point representing 

German equity returns at the "upper" end of the simulated frontier. 

 

The results have significant applications to investment practice.  In particular, many investment 

organizations devote a great deal of time and effort tweaking optimization assumptions.  The 

                                                 
13 In a related study, Chopra (1991) provides a simple three-asset example that illustrates how nearly optimal 

portfolios can be dramatically different in composition. 
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size of the statistical equivalence region in Exhibit 4.1 suggests that such practices may often 

have little investment merit or value. 

 

A PRACTICAL INVESTMENT TOOL? 

 

Faced with the level of variability inherent in MV portfolio optimization, should an investor 

abandon the technology?  This is, in fact, a very reasonable conclusion.14  MV optimization 

may often eliminate the investment value of information in return forecasts.  In general, MV 

optimization requires modification and constraints (Frost and Savarino 1988).  

 

In institutional practice, equity portfolio optimizations often have many constraints.  In many 

sophisticated organizations, the constraints on equity portfolio structure are so extensive they 

may all but define the "optimal" portfolio.  Although such practices can be rationalized, given 

the limitations of traditional MV optimization, they cannot be recommended.  In this context, 

optimizers provide little more than a computational convenience for structuring portfolios with 

little inherent investment content.   

 

The statistical equivalence region vividly illustrates the instability and ambiguity of traditional 

MV optimization for investment management.  However, the same results open the door to a 

fundamentally new perception of the statistical nature of MV efficiency.  A number of statistical 

techniques may enhance MV optimization.  This line of inquiry largely occupies the remainder 

of the text.   The following chapters focus on seven approaches for enhancing MV optimization:   

 

1. Statistical inference 

2. The resampled efficient frontier 

3. Portfolio efficiency analysis  

4. Improved input estimation 

5. Priors and benchmarks 

6. Using forecasts rigorously 

7. Avoiding common errors.   

 

Each area can help to improve the investment value of optimized portfolios.  Together they can 

have a substantial impact on the value of the optimization process.  Properly managed, the 

outlook for MV optimization as a practical tool of investment management should be cautious 

optimism. 

 

                                                 
14 See the comments in Jobson and Korkie (1981). 
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CHAPTER 5 PORTFOLIO REVIEW AND MV EFFICIENCY 

 

 

Many investors think of mean-variance (MV) efficiency as a tool for optimizing portfolios.  

However, not all portfolios need optimization.  Some are close to the efficient frontier and are 

statistically indistinguishable from efficiency.  A statistical test of portfolio MV efficiency may 

often be a convenient first step and a valuable alternative to MV optimization. 

 

PORTFOLIO REVIEW AND STATISTICAL INFERENCE 

 

In a portfolio review, an asset manager’s role is to recommend optimal revisions.  For some 

institutional managers, this function includes running the portfolio through an optimizer.  As a 

first step, it may often be preferable to determine whether the portfolio needs revision.  This 

may avoid the investment limitations of a portfolio optimization and eliminate unnecessary 

trading costs.   

 

The question of whether a portfolio needs revision is one of statistical inference.  A portfolio 

that is consistent with MV efficiency may not need revision.  Alternatively, if the portfolio is 

inconsistent with efficiency, the portfolio may need revision and additional procedures may be 

required.  Given the wide range of statistically equivalent portfolios shown in Exhibit 4.1, many 

diversified portfolios may not require revision.  

 

TESTS OF ASSET PRICING MODELS 

 

Statistical tests for the MV efficiency of a portfolio are available.1  In general, the procedures 

test for the MV efficiency of "market" portfolios as an empirical test of asset pricing models.2  

Such tests have limited applicability for institutional equity management for two reasons.  First, 

the tests allow short selling; sign-constrained MV efficiency often has significantly different 

characteristics.3  Second, the test procedures compare the MV efficiency of a portfolio to the 

maximum Sharpe ratio portfolio.4   However, the maximum Sharpe ratio portfolio is only one 

point on the efficient frontier and may not be most relevant in many cases of investment 

                                                 
1 Jobson and Korkie (1982) and Shanken (1985) develop MV efficiency tests based on the F distribution.  A recent 

review is given in Shanken (1996). 
2 As pointed out by Roll (1977), the efficiency of the market portfolio is equivalent to the empirical validity of the 

Capital Asset Pricing Model (CAPM).   
3 When short selling is allowed, the efficient frontier is summarized by three "efficient set" parameters and the MV 

efficiency of a portfolio is determined solely by its Sharpe ratio, not its position in mean-variance space. The 

parameters are insufficient for describing the short-selling-constrained efficient frontier and are not useful for many 

practical applications.   
4 The maximum Sharpe ratio portfolio depends on the assumed return of a short-term riskless asset or the zero-beta 

portfolio.  The zero-beta CAPM portfolio is developed in Black (1972). 
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interest.5  What is required is a test of MV efficiency for sign-constrained portfolios relative to 

relevant sign-constrained efficient portfolios. 

 

HEURISTIC INFERENCE  

 

The statistical equivalence region in Exhibit 4.1 populated by simulated 

sign-constrained-efficient portfolios is a heuristic basis for MV efficiency inference.  Referring 

to Table 2.2, consider inference for the MV efficiency of the current portfolio.  The current 

portfolio plotted in Exhibit 4.1, is well within the statistical equivalence region.  Consequently, 

the current portfolio appears consistent with MV efficiency and may not require optimization. 

 

Although it is intuitively appealing, the procedure in the previous paragraph is not statistically 

rigorous.  In particular, a statistical inference procedure requires control of Type I error: the 

probability of rejecting the null hypothesis when it is true.  The goal below is to transform the 

statistical equivalence region into a sample acceptance region so that it is useful for hypothesis 

testing.   

 

A SAMPLE ACCEPTANCE REGION 

 

Assume a Type I error of size .  A 100(1 - )% sample acceptance region for MV efficiency is 

an area under the efficient frontier that includes, on average, 100(1 - )% of resampled 

portfolios.  The definition of an area under a curve from elementary calculus provides a simple 

method for approximating the sample acceptance region from the statistical equivalence region.6  

Divide the area under the efficient frontier into mutually exclusive column rectangles that 

include all the simulated portfolios.7  Define the base of the rectangle as the minimum return 

point that contains 100(1 - )% of the simulated portfolios in the rectangle.  By construction, the 

curve connecting the midpoint of the base of the rectangles contains approximately 100(1 - )% 

of the simulated portfolios under the curve.   This curve is an estimate of the lower boundary of 

a 100(1 - )% sample acceptance region.  All portfolios on or below the efficient frontier and on 

or above the lower boundary are said to belong to the 100(1 - )% acceptance region.  As the 

number of efficient frontier portfolios, associated rectangles, and simulations increases, the 

approximation increases in accuracy.8   

                                                 
5 For example, an investor may be more interested in statistical equivalence with respect to the minimum variance 

portfolio than the maximum Sharpe ratio portfolio.  
6 The method used is called the Riemann integral in elementary calculus.  The area under a curve is approximated 

with mutually exclusive rectangles that span the region.  As the rectangles become dense, the approximation of the 

area under the curve becomes increasingly accurate.  
7 In this and the examples that follow, the end points defining the width of the fifty mutually exclusive rectangles 

that approximate the area under the curve are equal to the fifty adjacent pair efficient frontier portfolios. 
8 The astute reader may have noted that there is no fundamental reason why the rectangles that approximate the 

acceptance region need to be defined as column rectangles.  They could as easily been defined as row rectangles.  

Either procedure should result in approximately equivalent regions in most cases of practical interest.  Differences 

between the two approaches are likely to be largely functions of inadequate approximations.  As the approximations 

improve by increasing the number of efficient frontier portfolios and simulations, the results of the two approaches 

should be similar for many applications of interest. 
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The area between the efficient frontier and the lower curve in Exhibit 5.1 is a Monte 

Carlo-estimated 90% sample acceptance region for the simulated statistically equivalent 

portfolios in Exhibit 4.1.  The test for MV efficiency at the 90% acceptance level proceeds by 

determining whether the risk and return of a candidate portfolio is within the sample acceptance 

region.  If the portfolio is within the sample acceptance region, no revisions may be required; if 

the candidate portfolio is outside the region, it probably requires revision.  

 

 

Because of differences implied by sign-constrained portfolios, Jobson’s (1991) analytic estimate 

of the sample acceptance region is substantially different in shape from the region in Exhibit 5.1.  

The differences are most dramatic near the maximum average return point of the 

sign-constrained efficient frontier.  The area under the curve in Jobson’s acceptance region 

increases monotonically with risk while the sign-constrained portfolio acceptance region in 

Exhibit 5.1 decreases near the maximum average return point.   

 

Because the optimization in Exhibit 5.1 includes only eight assets, the sample acceptance region 

can have irregular properties.  In this case, the sample acceptance region includes German 
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equities and has a rather ragged lower-boundary.  As the number of assets and simulations 

increases, the smoothness of the boundary of the acceptance region is likely to increase.9   

 

The results in Exhibit 5.1 show that all three reference portfolios from Table 2.2 are well within 

the acceptance region and consistent with MV efficiency for a Type I error of =0.10.  One 

important implication of statistical inference is a reduced need for portfolio turnover.  In fact, 

many institutional portfolios may not need revision or may need fewer revisions with the use of 

statistical inference.  Consequently, statistical inference may have important benefits for 

investment performance and the efficiency of capital investment. 

 

STATISTICAL INFERENCE FOR A TARGET EFFICIENT PORTFOLIO 

 

Although it is useful as a first step, the sample acceptance region in Exhibit 5.1 has some 

significant investment management limitations.  For example, according to Exhibit 5.1, the 

current portfolio is consistent with MV efficiency.  However, is the portfolio statistically 

equivalent to every portfolio on the MV efficient frontier?  If not, does it matter in practice?  If 

a given portfolio is not statistically equivalent to an efficient portfolio that satisfies client risk 

objectives and constraints, it may still need revision. Statistical inference associated with a target 

efficient portfolio may increase the frequency of portfolio revisions relative to the test 

represented by Exhibit 5.1.  Practical statistical inference may often require consideration of 

target efficient portfolios.  In this case, statistical inference relative to a given efficient portfolio, 

rather than MV efficiency in general, may be of interest.  

 

RANK-ASSOCIATED EFFICIENT PORTFOLIOS 

 

A first step to statistical inference with respect to an efficient frontier portfolio is to associate 

statistically equivalent efficient portfolios with each point on the MV efficient frontier.  For 

example, the minimum-variance portfolio at the base of the efficient frontier in Exhibit 4.1 can 

be associated with the portfolios at the base of each simulated efficient frontier.10  

 

Statistically equivalent efficient portfolios can also be associated with any other point on the 

efficient frontier.  Recall that the efficient frontier and each statistically equivalent efficient 

frontier in Exhibit 4.1 consists of 51 portfolios.  Each efficient frontier portfolio is identifiable 

by its relative return rank.  For example, the minimum variance portfolio has the lowest rank, or 

rank 1, relative to the 51 efficient portfolios in each efficient frontier.  The maximum average 

return portfolio has the highest average return rank, or rank 51, in each simulated efficient 

frontier.  In similar fashion, any other portfolio on the efficient frontier is associated with a 

relative return rank.  Using this procedure, simulated efficient frontiers associate statistically 

equivalent portfolios with efficient frontier portfolios in Exhibit 4.1.  For future reference, 

                                                 
9 The lack of smoothness of the boundary is also due to the particular number of approximating rectangles in the 

construction process, which, in this case, is a function of the number of computed efficient frontier portfolios.    
10 This exercise is essentially the same as that in Jorion (1992). 
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define the twenty-first efficient frontier portfolio in return rank as the "middle" efficient frontier 

portfolio in Exhibit 4.1.11  

 

Exhibit 5.2 displays the 500 rank-associated statistically equivalent efficient portfolios from 

Exhibit 4.1 for three selected portfolios on the efficient frontier: minimum variance, middle, and 

maximum average return.  The positions of the three MV efficient portfolios are indicated by 

the circles on the efficient frontier.  The exhibit shows that the rank-associated simulated 

minimum variance portfolios cluster very tightly at the base of the efficient frontier and cover a 

very small area under the curve.  These portfolios are virtually indistinguishable from the base 

of the curve.  At the other end of the efficient frontier, the rank-associated simulated maximum 

average return portfolios consist solely of asset classes and represent a disconnected set of points 

that is not identifiable with an area under the efficient frontier.  The remaining scattered 

portfolios are rank-associated simulated middle efficient portfolios and represent a sparse area 

under the curve.  The shape of the rank-associated regions varies in interesting ways depending 

on the position of the portfolio on the MV efficient frontier.   

 

The rank-associated, statistically equivalent efficient portfolios have heuristic interest but limited 

value for identifying a region under the efficient frontier that is useful for statistical inference.  

Alternative methods of inference based on the rank-associated portfolios are discussed in 

Chapters 6 and 7.   

 

                                                 
11 Subsequent discussions use this definition consistently.  The ranking is from lowest to highest average return.  

Note that the efficient frontier portfolios are not equally spaced along the return spectrum at the high return end.  

Consequently, the twenty-first-rank portfolio is slightly below the middle of the efficient frontier.  
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CHAPTER 6 PORTFOLIO ANALYSIS AND THE RESAMPLED 

EFFICIENT FRONTIER  

 

This chapter introduces new tools for portfolio analysis and revision.  It also introduces an 

important new definition of portfolio efficiency, the “resampled efficient frontier,” which may 

often be the criterion of choice for defining optimal portfolios in practice. 

 

CONCEPTUAL PORTFOLIO STATISTICAL ANALYSIS 

 

Suppose that statistical tests are available for the weights of efficient portfolios, similar to those 

for the coefficients in linear regression analysis.  Would they be useful for portfolio 

management?  How would a manager use them?   

 

The tests may identify the securities that contribute most significantly to the efficiency of the 

portfolio.  The tests may also identify the portfolio weights that deviate significantly from a 

target efficient portfolio.  This information would help to formulate a revision of the portfolio 

that enhances efficiency without recourse to optimization.  The statistical procedures for 

portfolio analysis and revision discussed below have similar objectives and capabilities.   

 

EFFICIENT PORTFOLIO STATISTICAL ANALYSIS  

 

The Monte Carlo efficient frontier simulations in Chapter 5 are useful for analyzing the 

statistical characteristics of MV efficient frontier portfolios.  The information is implicit in the 

rank-associated simulated efficient portfolios illustrated in Exhibit 5.2.  Compute the averages, 

standard errors, and t-statistics of the average of the portfolio weights of the rank-associated 

simulated efficient portfolios.1  Define a “resampled efficient” portfolio as the average of the 

rank-associated simulated MV efficient portfolios.2  Define the “resampled efficient frontier” as 

the collection of the resampled efficient portfolios associated with an MV efficient frontier.3 

 

Tables 6.1-6.3 provide a statistical analysis of the minimum variance, middle, and maximum 

average return efficient frontier portfolios in Exhibit 5.2.  The second column in each table 

displays the average asset weight of rank-associated simulated efficient portfolios or the 

resampled efficient portfolio for the indicated MV efficient portfolio.  The third column shows 

the fifth-percentile value for the portfolio weight for the asset in the 500 simulations of efficient 

portfolios.  The fourth column lists the ninety-fifth-percentile portfolio weight in the 500 

simulations.  The fifth column lists the standard error of the average portfolio weights in column 

                                                 
1 The procedure is analogous to that used in Fama and MacBeth (1973).  
2 Resampled efficiency may also be defined in terms of a quadratic “utility” function parameter.  This alternative 

approach, discussed in the appendix, leads to similar results.   
3 The average of the simulated portfolio weights is a portfolio.  The author and Robert Michaud jointly discovered 

and developed properties of the resampled efficient frontier. 
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2.  The sixth column displays the t-statistic of the average portfolio coefficient.4  The seventh 

column displays the portfolio weights of the efficient portfolio.  The headings in the tables 

identify the efficient portfolio.  The table footnotes provide the annualized mean and standard 

deviation of the return premium of the MV efficient portfolio (column 7) and the average 

(resampled efficient) portfolio (column 2).   

 
TABLE 6.1  STATISTICAL ANALYSIS: MINIMUM VARIANCE EFFICIENT PORTFOLIO 

Asset Resampled Efficient  

Portfolio 

5th 

Percentile 

95th 

Percentile 

Standard Error T-statistic MV Efficient Portfolio 

Canada  0 0 .01 .01 0.30 0 

France  0 0 .01 .00 0.23 0 

Germany 0 0 .01 .00 0.35 0 

Japan   .02 0 .04 .01 1.09 .01 

U. K. 0 0 .01 .01 0.31 0 

U. S. 0 0 .01 .00 0.21 0 

U.S. Bond 0 0 0 .00 - 0 

Euro Bond .98 .96 1 .02 65.49 .99 

Note:   MV efficient portfolio mean = 3.3%; standard deviation = 5.4%. 

 Resampled efficient portfolio mean = 3.4%; standard deviation = 5.4% 

 

The data in the tables represent a form of linear regression analysis of the MV efficient frontier 

portfolios.  The range of coefficients within the fifth- and ninety-fifth-percentile bounds 

includes 90% of the simulated portfolio weights.  Because the distribution of portfolio weights 

is not normal, the percentile bounds often provide a more useful and reliable understanding of 

statistical significance than the t-statistics.5 

 

The data in Table 6.1 show that Euros dominate the structure of minimum variance portfolios; no 

other asset weight is statistically significantly different from zero.  The statistical results are 

consistent with the compact size of the area covered by the statistically equivalent portfolios at 

the base of the efficient frontier in Exhibit 5.2.  The structure of the minimum variance efficient 

frontier portfolio is the most reliable of all portfolios on the efficient frontier.  This should not 

be surprising since the minimum variance portfolio ignores the additional variability associated 

with optimizing expected portfolio return.  

 

The results in Table 6.2 illustrate the wide level of variability associated with efficient portfolios 

over much of the MV efficient frontier.  The largest average resampled portfolio weight for the 

middle efficient portfolio, Eurobonds, is not significantly different from zero at the 5% level.6  

Note that the t-statistic for Euros is misleading in terms of asset weight statistical significance.  

All average portfolio coefficients are significantly different from one at the 5% level.  The most 

important other components of the middle portfolio are Japanese and U.S. equities.  The results 

are consistent with the wide dispersion of statistically equivalent portfolios displayed in Exhibit 

5.2 for the middle portfolio.  Note that the resampled efficient portfolio differs in some 

important instances from the middle MV efficient portfolio.  As will be seen, this result is not 

anomalous. 

 

                                                 
4 See Judge et. al. (1988 pp. 216-7), for a similar analysis. 
5 I am indebted to Philippe Jorion for this suggestion. 
6 According to the fifth-percentile lower bound, at least 5% of the resampled portfolio weights were zero.  Some 

higher error rate than 5% is required to reject the hypothesis of insignificance. 
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Table 6-2 Statistical Analysis: Middle Efficient Portfolio 
Asset Resampled Efficient 

Portfolio 

5th 

Percentile 

95th 

Percentile 

Standard Error T-statistic MV Efficient Portfolio 

Canada  .01 0 .07 .04 0.23 0 

France  .08 0 .32 .11 0.69 .05 

Germany .03 0 .20 .07 0.45 0 

Japan   .13 0 .42 .13 1.03 .15 

U. K. .07 0 .31 .11 0.65 .03 

U. S. .22 0 .43 .16 1.37 .32 

U.S. Bond .09 0 .53 .19 0.46 0 

Euro Bond .37 0 .54 .17 2.23 .44 

Note:   MV efficient portfolio mean = 6.6%; standard deviation = 9.1%. 

 Resampled efficient portfolio mean = 6.5%; standard deviation = 9.2% 

 

 

The data in Table 6.3 present a strikingly interesting, perhaps unexpected, analysis of the 

maximum average return efficient frontier portfolio.  Most notably, the MV efficient frontier 

portfolio differs substantially from the resampled efficient portfolio.  These results are easy to 

rationalize.  All simulated statistically equivalent maximum average return portfolios in Exhibit 

5.2 consist of only one asset.  Because of their nearly identical average return, Japan and France 

are nearly equally likely to be the simulated maximum average return efficient portfolio.  Other 

simulations occasionally result in other indices as the maximum average return efficient asset.  

The average portfolio weights reflect the relative frequency of the asset having the highest 

simulated average return.7  No average portfolio weight is statistically significantly different 

from zero.  Although some average portfolio weights are statistically significantly different 

from 1 at the 5% level, four are not.     

 
TABLE 6-3 STATISTICAL ANALYSIS: MAXIMUM AVERAGE RETURN EFFICIENT 

PORTFOLIO 
Asset Resampled Efficient 

 Portfolio 

5th 

Percentile 

95th 

Percentile 

Standard Error T-statistic MV Efficient Portfolio 

Canada  .01 0 0 .10 0.10 0 

France  .34 0 1 .47 0.71 1 

Germany .04 0 0 .20 0.20 0 

Japan   .33 0 1 .47 0.70 0 

U. K. .16 0 1 .37 0.44 0 

U. S. .12 0 1 .33 0.37 0 

U.S. Bond 0 0 0 .05 0.05 0 

Euro Bond 0 0 0 .00 0.04 0 

Note:   MV efficient portfolio mean = 10.5%; Standard Deviation = 24.4%. 

 Resampled efficient portfolio mean = 9.9%; standard deviation = 17.3% 

 

                                                 
7 In this case, the weights of the average portfolio are interpretable as highest return binomial probabilities in a 

simulation. 
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THE RESAMPLED EFFICIENT FRONTIER  

 

Exhibit 6.1 displays the collection of all the resampled efficient portfolios associated with the 

MV efficient frontier in Exhibit 2.5.  By definition, the resampled efficient frontier lies below 

and within the range of portfolio risk spanned by the MV efficient frontier.  At the low-risk end, 

resampled efficient frontier portfolios are similar to their associated MV efficient portfolios.  As 

portfolio risk increases, the similarities diminish.   

 

The resampled efficient frontier is not simply a statistical artifact of portfolio simulation analysis 

but a computable and practical alternative investment strategy.  The resampled efficient frontier 

portfolios are identifiable by resampling optimization inputs.  The question of investment 

interest is whether the resampled efficient frontier provides a relevant and practical alternative 

for defining portfolio efficiency.  The following discussion further explores this important issue. 

 

TRUE AND ESTIMATED OPTIMIZATION INPUTS 

 

Historic data such as Tables 2.3 and 2.4 may not be useful for defining optimization inputs.  

This is because the data may not represent the true state of nature either during the historic 

period or for the investment horizon of interest.  The basic problem is that the true optimization 

inputs are not only unknown but also unknowable.  For any statistical procedure to be useful, 

the relevance of the input data for the forecast period is a key assumption.  Given relevant data, 

the objective is to use the information optimally. 

 

Assume that the historic data in Tables 2.3 and 2.4 define the true optimization inputs for a given 

investment horizon.  Consequently, no other set of input assumptions is more appropriate as a 

basis for portfolio optimization.  Although an MV efficient frontier portfolio is not necessarily 

the investment performance winner for a given draw of returns over the investment horizon, it is 

on average the best-performing portfolio for a given risk level.  In this case, the resampled 

efficient frontier portfolios have little practical investment interest. 
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The problem with the scenario in the previous paragraph, and its conclusion, is that it is 

completely unrealistic and has little practical consequence. Optimization inputs, however 

estimated, contain estimation errors and are at best an informed guess of their true values.  The 

more realistic situation is that the input data may be relevant but have estimation error. 

 

What differentiates MV portfolio optimization from other applications of statistically estimated 

data is its tendency to overuse estimation errors.  Exhibit 4.1 vividly illustrates that MV 

efficiency is very sensitive to estimation error, even assuming a stationary return process.8  

Resampled efficiency may help to address the issue of overfitting data that is endemic to MV 

efficiency.  

 

TESTING RESAMPLED EFFICIENCY 

 

Suitably modified, the Jobson and Korkie (1981) simulation method for measuring the impact of 

estimation error on the out-of-sample performance of MV efficient portfolios is applicable to 

                                                 
8  The implicit assumption in simulation studies is that the return distribution reflected in the historic data is 

stationary for the investment horizon of interest.  The non-stationarity of the return distribution adds another 

significant dimension of estimation error to MV optimization. 
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sign-constrained MV optimization.  With further modification, the basic framework is also 

useful for measuring the out-of-sample relative performance of resampled efficiency. 

 

Chapter 5 describes the rank-association process that relates sign-constrained MV efficient 

frontier portfolios with sign-constrained simulated efficient portfolios.  The out-of-sample 

performance of the simulated efficient portfolios is measurable as the true Sharpe or 

reward-to-risk ratio.  Average true Sharpe ratios for rank-associated sign-constrained simulated 

efficient portfolios play the same role as the average true Sharpe ratio in Jobson and Korkie’s 

simulation of maximum Sharpe ratio portfolios. 

 

In a Jobson and Korkie framework, the true optimization parameters, as represented by Tables 

2.3 and 2.4, are unknowable.  Each simulation is a possible out-of-sample realization of the true 

values of the optimization parameters.  A resampled efficient frontier portfolio is the result of 

additional optimization input simulations based on each simulated set of optimization 

parameters.  A test of resampled efficiency proceeds by comparing the true reward-to-risk ratios 

for rank-associated portfolios for each simulated MV efficient frontier relative to the same 

rank-associated portfolios that result from resampling the simulated efficient frontier parameters.  

The result is a single MV efficient portfolio and a single resampled efficient portfolio for each 

simulation and rank association.9   

 

Table 6.4 summarizes the distribution of the reward-to-risk ratios for MV and resampled 

efficiency for the three portfolios in Tables 6.1-6.3.10  The first row shows the mean of the true 

reward-to-risk ratios for the simulations of the three rank-associated portfolios for MV and 

resampled efficiency.  The second and third rows provide the same information for the tenth and 

ninetieth percentiles of the reward-to-risk ratios.  The fourth row displays the proportion of the 

simulations where resampled outperforms MV efficiency.  The data reflect 500 simulated MV 

efficient frontiers estimated for 216 monthly periods.  The resampled efficient frontier portfolios 

are defined from 500 simulations for each of the 500 simulated efficient frontiers.   

 
TABLE 6.4 RESAMPLED VERSUS MV EFFICIENT PORTFOLIOS, TRUE REWARD-TO-RISK 

RATIOS 

                             MV Efficiency            Resampled Efficiency 

 Min Middle Max  Min Middle Max 

Mean 0.178 0.202 0.127  0.180 0.204 0.151 

Tenth-Percentile 0.172 0.188 0.125  0.175 0.194 0.134 

Ninetieth-Percentile 0.185 0.214 0.132  0.186 0.212 0.170 

Success Probability     0.976 0.590 0.984 

 

The results in Table 6.4 show that, in nearly every instance, resampled efficiency is superior to 

MV efficiency.  In particular, resampled efficiency is, on average, a uniformly superior 

investment strategy that increases in importance as risk increases.  Also, as shown by the data in 

the bottom row, resampled efficiency is likely to be the superior investment in practice.  

                                                 
9 See the appendix in this chapter for more details and results.  I am indebted to Robert Michaud and Olivier Ledoit 

for critical assistance in defining the test framework. 
10 A more complete description of the distribution of reward-to-risk ratios is given in Table 6A.1 in the appendix in 

this chapter. 
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Exhibit 6.2 provides a graphic illustration of the true average performance of portfolios defined 

by resampled and MV efficiency.  Note that the axes are defined as true return premium 

parameters.  The top curve is Exhibit 2.5, which, in this context, represents the true but 

unknowable optimization inputs in Tables 2.3 and 2.4.  The lower curve is the true average 

return and average risk of the 500 rank-associated simulated MV efficient portfolios.  The 

difference between the top and bottom curves reflects the impact on average of estimation error 

for sign-constrained efficient portfolios.  The middle curve represents the true average return 

and average risk of resampled efficient portfolios.  Consistent with Table 6.4, the exhibit shows 

that resampled efficient portfolios are, on average, uniformly superior to MV efficiency.  The 

differences are relatively minimal at low risk levels but increase as risk increases.  Although it is 

not exact, a line parallel to the horizontal axis provides a reasonable approximation of 

rank-association of portfolios on the two frontiers.  Consequently, in rough terms, resampled 

efficiency on average reduces true risk relative to MV efficiency.11  The results show that 

resampled efficiency has greatest impact on performance at high levels of risk.  The test of 

resampled efficiency represented by Table 6.4, Exhibit 6.2, and the tables in the appendix are 

conservative.  Reducing the number of estimation periods or increasing the number of assets 

will increase the relative importance of resampled efficiency. 

 

PROPERTIES OF RESAMPLED EFFICIENT FRONTIERS 

 

To maximize expected return or reduce risk, MV efficient portfolios assume extreme asset 

weights.  These extreme weights result in outlier portfolios that strongly depend on the values of 

a particular set of inputs.  It is this outlier characteristic of MV portfolio efficiency that is the 

fundamental source of its limitations as a practical tool of investment management.  

Overreliance on the values of estimated parameters leads to instability, ambiguity, and likely 

poor out-of-sample performance. 

 

Resampled efficiency deals directly with the fundamental limitations of MV optimization.  Each 

resampled portfolio is a possible MV efficient portfolio associated with the original input data.  

By definition, the average resampled MV efficient portfolio is not an outlier.  Resampled 

efficiency moderates the extreme portfolio weights associated with MV efficient portfolios.12  

Consequently, resampled efficient portfolios are less dependent on any particular set of 

optimization inputs.  Less extreme portfolio weights are evident in the high-expected-return 

efficient portfolios but are also present to a lesser degree at the low-risk end of the efficient 

frontier.  Because resampled efficient frontier portfolios are not outliers, they are more likely to 

provide safer and reliable investments in practice and better out-of-sample performance on 

average.  Note also that portfolios with more moderate bets on assets may have additional 

practical investment benefits.  These include reduced liquidity demands and likely lower trading 

costs in future portfolio rebalancings. 

                                                 
11 See Table 6A.1 for further details.   
12 Moderation of extreme portfolio weights is a characteristic of admissible Stein estimators, discussed in Chapter 8.  

In the case of the resampled frontier, the moderation of extreme portfolio weights may be subject to feasibility and 

the satisfaction of sign, budget, and other constraints.  In the simple cases considered, a resampled efficient frontier 

portfolio may not moderate zero portfolio weights if a nonzero portfolio weight is infeasible. 
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One of the most attractive features of resampled efficient portfolios is that they are often more 

reasonable investments and more consistent with investment intuition.  To illustrate, the 

maximum average return MV efficient portfolio in Exhibit 6.1 represents a 100% bet on French 

equities.  However, the optimization inputs for Japanese and French equities in Table 2.3 are 

virtually identical.  Based purely on the historic data, many investors are likely to prefer an 

equal bet on both markets.  In addition, the optimization inputs for U.K. and U.S. equities are 

not very different from Japanese and French equities.  Consequently, the resampled efficient 

portfolio, consisting of bets on Japanese, French, U.S., and U.K. equities, may seem far more 

preferable than the 100% bet on French equities implied by MV efficiency.   

 

Resampled efficient frontier portfolios deviate most significantly, and are likely to be most 

useful, at higher levels of portfolio risk, which is the region of the efficient frontier that is often 

of most interest to active managers.  They may also be more effective in the context of better 

estimation procedures of optimization parameters.13   

 

                                                 
13 Chapter 8, which considers Stein estimation, discusses this topic further. 
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RESAMPLED EFFICIENT FRONTIER RANGE 

 

In Exhibit 6.1, the resampled efficient frontier spans roughly two-thirds of the range of portfolio 

risk as the MV efficient frontier.  This smaller set of portfolio risk may appear to indicate a 

more limited range of useful investment opportunities for resampled efficient frontier investors.  

However, as Exhibit 6.2 shows, the reduced range of risk is simply an indication of the benefits 

of resampled efficiency.  Resampled efficient portfolios often have less true risk with little, if 

any, reduction in true average return, relative to their rank-associated MV efficient portfolios.  

The reduction in risk is a reflection of the limitations of the reliability of the information in 

historic data for portfolio optimization, particularly at the high-expected-return end of the MV 

efficient frontier.  

 

CAVEATS 

 

The investment attractiveness of resampled efficiency may be misinterpreted.  The simulations 

do not prove that resampled efficient portfolios always perform better than MV optimized 

portfolios in practice.  Resampled efficiency improvements in performance critically depend on 

the relevance of the inputs for the forecast horizon.  If other inputs are more appropriate, the 

resampled efficient portfolios may perform less well than MV efficiency or an equal-weighted 

portfolio.  The criterion does not obviate the need for better estimation methods or more 

appropriate optimization frameworks.   

 

CONCLUSION 

 

Resampled efficiency is an important new tool for defining portfolio efficiency in practice.  It is 

useful for understanding the statistical characteristics and practical limitations of MV efficiency.  

In addition, it may often enhance the out-of-sample investment value of optimized portfolios in 

the context of the MV efficiency criterion.  Relative to MV efficiency, resampled efficient 

portfolios are likely to be more robust and investment intuitive, two useful characteristics in 

many institutional contexts. 

 

APPENDIX RESAMPLED EFFICIENCY TESTS AND ALTERNATIVES 

 

This appendix provides a more detailed presentation of the procedure and results for testing the 

out-of-sample performance of resampled versus MV efficiency.  It also presents and compares 

an alternative approach to defining resampled efficiency based on parameters in quadratic utility 

optimization.  

 

A. Resampled Efficiency for Sign-Constrained Portfolios. 

 

In Jobson and Korkie (1981), a set of optimization inputs (e.g., Tables 2.3 and 2.4) are assumed 

to describe the true state of nature.  Jobson and Korkie test the impact of estimation error on 
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MV optimization by simulating optimization inputs and evaluating the performance of optimized 

portfolios with respect to the true value of the optimization parameters. 

 

For MV optimization with only a budget constraint, the performance measure of choice is the 

average of the true reward-to-risk ratios of the simulated maximum Sharpe ratio portfolios. 

 

For sign-constrained MV optimization, some method of associating each efficient frontier 

portfolio with a simulated efficient frontier portfolio is required.  The associated rank method, 

described in Chapter 5, associates sign-constrained efficient frontier portfolios of a given rank 

along the efficient frontier with the same rank simulated MV efficient frontier portfolios.  The 

distribution of the true reward-to-risk ratios of similar rank simulated efficient portfolios 

provides a measure of the impact of estimation error on MV efficiency.  In Table 6A.1A and 

6A.1B, 500 simulations of MV efficient frontiers are performed, giving rise to 51 

rank-associated portfolios in each simulation.  In Exhibit 6.2, the bottom curve is the average 

return and average risk of the 500 simulated MV efficient portfolios for each rank-associated 

portfolio on the true efficient frontier. 

 

Each of the 500 simulated MV efficient frontiers provides a candidate set of MV optimization 

parameters.  An additional 500 simulations of each of the MV efficient frontier optimization 

inputs leads to a resampled efficient frontier portfolio for each rank-associated portfolio.  The 

average of the 500 resampled efficient frontier portfolios for each MV simulated efficient 

frontier forms 500 resampled rank-associated efficient portfolios.  The middle curve in Exhibit 

6.2 is the average return and average risk of the 500 resampled efficient portfolios for each of the 

rank-associated portfolio on the true efficient frontier.  

 

Table 6A.1 provides a more extensive description of the distribution of the true reward-to-risk 

ratio results in Table 6.4.  There are two panels of data.  The first is for MV efficiency and the 

second is for resampled efficiency.  The additional information in Table 6A.1 relative to Table 

6-4 includes 

 

1. minimum, maximum and median reward-to-risk ratios; 

2. a more comprehensive set of rank-associated portfolios (11th, 31st, 40th, and 46th  from a 

total of 51);  

3. average return and average risk of the resampled and MV efficient portfolios in the two 

bottom rows.   

 

In particular, the data in the two bottom rows of Table 6A.1 are the basis of Exhibit 6.2 and 

evidence for the notion that, as a reasonable approximation, resampled efficiency on average 

reduces true risk relative to MV efficiency. 

 
Table 6-5A Rank-Associated True Reward-to-Risk Ratios, MV Efficient Portfolios 

Portfolio 

Rank 

Minimum 11 Middle 31 40 46 Maximum 

Average 

Minimum 0.172 0.175 0.161 0.139 0.112 0.096 0.070 

Tenth Percentile 0.172 0.187 0.188 0.172 0.152 0.138 0.125 

Mean 0.178 0.194 0.202 0.193 0.177 0.164 0.127 

Median 0.178 0.195 0.204 0.195 0.180 0.164 0.125 
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Ninetieth Percentile 0.185 0.201 0.214 0.212 0.198 0.188 0.132 

Maximum 0.195 0.208 0.216 0.215 0.207 0.197 0.165 

Standard Deviation 0.005 0.006 0.010 0.015 0.018 0.018 0.017 

        

Return (%) 3.3 3.8 4.7 5.8 7.3 8.8 9.9 

Risk    (%) 5.4 5.6 6.7 8.6 12.0 15.8 22.7 

 
Table 6-5B Rank-Associated True Reward-to-Risk Ratios, Resampled Efficient Portfolios  

Portfolio Rank Minimum 11 Middle 31 40 46 Maximum 

Average 

Minimum 0.172 0.182 0.175 0.153 0.130 0.115 0.105 

Tenth Percentile 0.175 0.188 0.194 0.185 0.168 0.154 0.134 

Mean 0.180 0.194 0.204 0.197 0.183 0.171 0.151 

Median 0.179 0.195 0.205 0.198 0.184 0.171 0.151 

Ninetieth Percentile 0.186 0.199 0.212 0.210 0.199 0.188 0.170 

Maximum 0.195 0.204 0.215 0.215 0.206 0.198 0.190 

Standard Deviation 0.004 0.004 0.007 0.010 0.012 0.013 0.014 

        

Return (%) 3.4 3.8 4.6 5.6 7.1 8.5 9.6 

Risk    (%) 5.4 5.6 6.5 8.1 11.1 14.5 18.5 

Success 0.976 0.506 0.59 0.684 0.764 0.788 0.984 

 

B.  Rank-Versus -Associated Resampled Efficient Portfolios. 

 

One alternative approach for defining an association between efficient and simulated efficient 

frontier portfolios is to use a quadratic utility objective function.  Given a value of  (lambda), 

associate the efficient and simulated efficient sign-constrained portfolios that minimize:  

   =   −        (−) 

 

Each value of  defines a specific portfolio on the MV and simulated efficient frontiers.  

Varying  from zero to infinity spans the set of efficient and simulated efficient frontier 

portfolios.  Consequently, the average of -associated simulated efficient portfolios may be used 

to define a resampled efficient portfolio; varying  from zero to infinity may serve as an 

alternative basis for defining the resampled efficient frontier. 

 

Table 6A.2 displays the true reward-to-risk ratios for MV and resampled efficiency in the same 

test procedure and format as in Table 6A.1, where  is used to associate simulated with efficient 

portfolios.  The  values are shown in the first row of Table 6A.2.  s and ranks play a similar 

role in defining portfolios along the efficient frontiers.  Allowing for random variation and 

inexact correspondence, most of the corresponding results in Tables 6A.1 and 6A.2 appear 

roughly the same.  However, as opposed to Table 6A.1, the results in Table 6A.2 indicate that 

−association resampled efficiency may often increase true risk.14  As a practical matter, the 

choice between the two approaches may simply be a matter of convenience.  If substantive 

differences of interest exist, they await further research.  

                                                 
14 For example, when  equals 10, 15 and 20 in Table 6A.2, the average true risk is larger for resampled than for 

MV efficiency.   



EFFICIENT ASSET MANAGEMENT  Page 13 

  

 

Table 6A.2A Lambda-Associated True Reward-to-Risk Ratios, MV Efficiency 

 0 10 15 20 50 100 infinity 

Minimum 0.172 0.169 0.152 0.137 0.089 0.085 0.070 

Tenth Percentile 0.172 0.188 0.186 0.179 0.147 0.125 0.125 

Mean 0.178 0.201 0.200 0.195 0.170 0.152 0.127 

Median 0.178 0.202 0.201 0.197 0.172 0.151 0.125 

Ninetieth Percentile 0.185 0.213 0.212 0.209 0.190 0.181 0.132 

Maximum 0.195 0.216 0.216 0.217 0.215 0.204 0.165 

Standard Deviation 0.005 0.009 0.011 0.013 0.018 0.021 0.017 

        

Return (%) 3.3 4.4 5.0 5.5 8.1 9.3 9.9 

Risk    (%) 5.4 6.3 7.2 8.3 14.0 18.0 22.7 

 

Table 6A.2B Lambda-Associated True Reward-to-Risk Ratios, Resampled Efficiency 

 0 10 15 20 50 100 infinity 

Minimum 0.172 0.174 0.160 0.147 0.110 0.102 0.105 

Tenth Percentile 0.175 0.192 0.189 0.182 0.155 0.143 0.134 

Mean 0.180 0.202 0.200 0.196 0.173 0.161 0.151 

Median 0.179 0.203 0.202 0.197 0.175 0.161 0.151 

Ninetieth Percentile 0.186 0.211 0.210 0.208 0.191 0.183 0.170 

Maximum 0.195 0.216 0.215 0.215 0.207 0.200 0.190 

Standard Deviation 0.004 0.008 0.009 0.011 0.015 0.016 0.014 

        

Return (%) 3.4 4.5 5.1 5.8 8.1 9.0 9.6 

Risk    (%) 5.4 6.4 7.4 8.6 13.6 16.3 18.5 

Success 0.976 0.678 0.538 0.490 0.714 0.840 0.984 
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CHAPTER 7 PORTFOLIO REVISION AND CONFIDENCE REGIONS 

 

Efficient frontier resampling provides an important window for understanding the fundamental 

statistical character of sign-constrained mean-variance (MV) optimization.  As previously 

discussed, resampling methods may provide very useful information on the suitability of a 

portfolio for investment without optimization.  In many cases, however, more specific 

information may be required.  This chapter introduces some additional tools for portfolio 

inference and revision at the portfolio level and continues the exploration of the statistical 

characteristics of resampled efficiency. 

 

CONFIDENCE INTERVALS AND REGIONS  

 

The statistical analysis of the portfolios in Tables 6.1-6.3 has significant investment management 

limitations.  Like linear regression analysis, the percentile statistics are useful primarily as a 

way of analyzing the importance of one asset while holding the other assets constant.  It is often 

important, however, to determine whether the portfolio as a whole, rather than an asset weight, is 

consistent with efficiency.  Such considerations require summaries of significance at the 

portfolio level. 

 

Many readers are familiar with a confidence interval for a statistic.  In elementary statistics, a 

100(1 - )% confidence interval is defined as an interval that, before sampling, contains the true 

value of the statistic of interest, such as the population mean, with probability 1 - .  Generally, 

confidence intervals summarize all the values of a statistic, such as the mean, that is consistent 

with the sample mean at Type I error level .  Confidence interval analysis is similar to 

percentile statistic analysis shown in Tables 6.1-6.3.   

 

A confidence region is a generalization of a confidence interval at the portfolio level.  To 

discuss confidence regions, it is useful to think of a portfolio as a vector of portfolio weights.  A 

vector is simply an ordered set of numbers representing the portfolio weight for each asset in the 

string.  For example, Table 2.2 defines the current portfolio as an eight-dimensional vector of 

the portfolio weights 5, 10, 0, 20, 15, 20, 20, and 5.  Here it is understood that the sixth element 

refers to the 20% portfolio weight for U.S. equities.  In similar fashion, any other 

eight-dimensional vector with sum-to-100 nonnegative values may represent a portfolio of 

allocations to the eight asset classes in Table 2.2.  Each simulated MV efficient frontier 

portfolio in Exhibit 5.1 represents an eight-dimensional random vector.  The resampled efficient 

frontier represents sample means of these vectors.   
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RESAMPLED EFFICIENCY AND DISTANCE FUNCTIONS 

 

In this chapter, the resampled efficient frontier defines the notion of portfolio efficiency.  There 

are two reasons for focusing on resampled, instead of MV, efficiency.  First, a resampled 

efficient portfolio is a sample mean vector.  The statistical properties of the sample mean vector 

are often mathematically and statistically convenient.  Second, resampled efficiency is likely to 

have the most practical investment interest.  

 

The efficiency of a portfolio depends on whether the portfolio vector is “close” to the resampled 

efficient portfolio.  Confidence regions require a notion of a distance function that compares the 

entire portfolio with a given resampled efficient portfolio.  

 

Under standard assumptions, a sample mean vector has a well-known statistical distribution.1  

AlthouGH confidence region geometry is often complex, statistical inference and the definition 

of the confidence region are straightforward.2  Statistical inference is associated with a test 

statistic that operates as a distance function.  Unfortunately, the standard procedure for the 

sample mean vector is not valid for the resampled efficient frontier. 3  

 

RESAMPLED EFFICIENT FRONTIER CONFIDENCE REGIONS 

 

One of the principal goals of resampling or bootstrap methods is to define test statistics and 

provide good estimates of confidence sets in situations where standard statistical methods may 

not be available or yield exact answers.  For resampled portfolio efficiency, resampling 

statistical methods are useful and convenient.   

 

Let P be a vector of portfolio weights for any portfolio, and let P0 be a vector of the portfolio 

weights of a given portfolio on the resampled efficient frontier.  Let S equal the covariance 

matrix of historic return premiums defined by Tables 2.3 and 2.4.  The relative variance4 or 

portfolio variance relative to P0 is a natural basis to define a test statistic of the distance between 

portfolio P and P0.  Define the confidence region resampling test statistic as:  

 

   (P-P0)*S*(P- P0)'  constant.5    (7-1) 

    

The simulation process provides a simple means of computing a constant that defines the test 

statistic in formula 7-1 and 100(1 - )% confidence region relative to P0 on the resampled 

                                                 
1 The usual assumptions include multivariate normal returns or sufficiently large random samples.  
2 See Appendix A for a description of confidence regions and inference for the sample mean vector under standard 

assumptions.   
3 See Appendix A in this chapter. 
4 The relative variance for portfolio P relative to P0 is defined as: (P-P0)*S*(P- P0)'. 
5 Formula 7-1 assumes vector and matrix operations.  The term (P-P0) is the difference vector of portfolio weights.  

The term (P-P0)' is the transpose of the difference vector.  S is the historic return covariance matrix.  The result of 

the matrix and vector products is a number.  
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efficient frontier.6  The distribution of the test statistic depends on the value of P0.  Table 7.1 

provides estimates of the constant in formula 7-1 for the minimum variance, middle, and 

maximum average return resampled efficient portfolios in Exhibit 5.2.  The constants reflect the 

range of values of relative variance that define the portfolios within a  90% confidence level 

resampled efficient region.  

 

Table 7.1 Resampled Efficient Region, 90% Confidence Level  

 Minimum Variance Middle Maximum 

Average Return 

Test Statistics 0.028 3.0 20. 

 

To illustrate the test, column 2 in Table 6.1 gives the portfolio weights P0 for the minimum 

variance resampled efficient portfolio.  The procedure is to substitute the portfolio vector for a 

given portfolio P into the formula 7-1 and compare the result to the value of the constant 0.028 in 

Table 7.1.  If the relative variance or left-hand side of formula 7-1 is less than the constant in 

Table 7.1, the portfolio is within the 90% confidence region.  We can then infer that the 

portfolio is statistically equivalent to the resampled efficient portfolio at the 10% Type I error 

level.7  

 

It is of interest to visualize the range of portfolios that are statistically equivalent to portfolios on 

the resampled efficient frontier.8  Exhibit 7.1 provides a description of the 90% confidence 

region for the minimum variance and middle resampled efficient portfolios.9   

 

As Exhibit 7.1 shows, the risk level of the resampled efficient portfolio dramatically affects the 

shape of the confidence region.  The confidence region for the minimum variance portfolio is 

very dense and compact.  This result is consistent with the fact that minimum variance 

resampled efficiency is least ambiguous.   The confidence region for the middle portfolio covers 

a much wider region of statistically equivalent portfolios and reflects much more ambiguity.  

The 90% confidence region for the maximum average return resampled efficient portfolio (not 

shown) covers almost the entire area under the efficient frontier.  The ambiguity of maximum 

average return efficiency reflects the unreliability of the historic data at high levels of portfolio 

risk and motivates the need for additional tools.   

 

                                                 
6 See Appendix B for further details. 
7 Note that the range of values of the relative variance for the maximum average return resampled efficient portfolio 

is discrete.  The percentile constant estimate in Table 7.1 is less likely to be as accurate in this case.  On the other 

hand, the information is the best available. 
8 Another perspective on this visualization of the confidence regions is that they are fuzzy sets for points on the 

resampled efficient frontier.  Lower confidence levels may be appropriate for some fuzzy set applications. 
9 The procedure is an exhaustive search algorithm, which can be very computationally intensive.  Increments of all 

feasible portfolio weights define the search procedure.  Plotting consists of all feasible portfolios that satisfy the 

range of relative variance, as defined by the constants in Table 7.1.  The actual shape of the confidence regions is 

largely of pedagogic value. 
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SIMULTANEOUS CONFIDENCE INTERVALS 

 

Simultaneous confidence intervals are a relatively simple generalization of confidence intervals 

that provides some of the information of a confidence region in a convenient form for portfolio 

analysis.10   As the name implies, simultaneous confidence intervals associate confidence 

intervals with each of the portfolio weights.  The 100(1 - )% simultaneous confidence intervals 

have the property that at least 100(1 - )% of the simultaneously observed portfolio weights are 

within the bounds defined for each variable.  This guarantees that any portfolio that is not within 

the simultaneous confidence region rejects the null hypothesis at Type I error level .  The 

computation of the simultaneous confidence intervals is straightforward and derives from the 

confidence regions plotted in Exhibit 7.1.11 

                                                 
10 Simultaneous confidence interval procedures are described in Johnson and Wichern (1992, 191-202). 
11 Appendix B in this chapter provides a description of the procedure. 
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Simultaneous confidence intervals often provide a simple way of rejecting consistency with 

resampled efficiency for many portfolios and of indicating portfolio revisions for inefficient 

portfolios -- two of the primary objectives of the chapter.  However, the simplicity of 

simultaneous confidence intervals comes at the price of some significant limitations.  One 

tradeoff is that the actual Type I error level is likely to be significantly less than .  This means 

that a portfolio that satisfies the simultaneous confidence intervals may still not be consistent 

with resampled efficiency for a given level of .  Also, because the computation is based on the 

computation of confidence regions in Exhibit 7.1, the estimation process may be computationally 

intensive. 

 

EXAMPLES OF SIMULTANEOUS CONFIDENCE INTERVALS 

 

Tables 7.2-7.4 provide estimates of the simultaneous 90% confidence intervals for the values of 

portfolio weights for the minimum variance, middle, and maximum average return resampled 

efficient frontier portfolios in Tables 6.1-6.3.  Column 2 displays the lower bounds and column 

4 displays the upper bounds for each asset for the indicated resampled efficient portfolio. 

 

The results in Table 7.2 confirm the relatively specific character of minimum variance 

efficiency.  Any portfolio that does not satisfy all the bounds of asset weights in Table 7.2 is 

inconsistent with minimum variance resampled efficiency.  Ninety percent of simulated 

minimum variance efficient portfolios require at least a 78% allocation to Eurobonds. The upper 

bounds of the intervals indicate that only relatively minimal allocations in other assets are 

consistent with minimum variance resampled efficiency. 

 

The results in Table 7.3 vividly illustrate the level of ambiguity that may exist for defining MV 

efficiency for more typical points on the resampled efficient frontier.  The data rule out few 

reasonably diversified portfolios.  For example, an equally-weighted portfolio in Eurobonds and 

Japanese and U.S. equities satisfies the bounds in the Table 7.3.  The results are consistent with 

the wide dispersion of statistical equivalent portfolios displayed in the middle of Exhibit 7.1.   

 

Table 7.4 shows that nearly any reasonable portfolio is within the 90% simultaneous confidence 

region for the maximum average return resampled portfolio.  Efficient portfolio structure at high 

levels of risk is not very well defined.  Note that estimation accuracy, which diminishes 

significantly in Tables 7.3 and 7.4 relative to Table 7.2, reflects the computationally intensive 

character of the procedure. 
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Table 7.2 90% Simultaneous Confidence Intervals, Minimum Variance Portfolio 

 Lower Bound Resampled Efficient Portfolio  Upper Bound 

Canada  0 0 .03 

France  0 0 .02 

Germany 0 0 .03 

Japan   0 .02 .03 

U. K. 0 0 .03 

U. S. 0 0 .04 

U.S. Bond 0 0 .19 

Euro Bond .78 .98 1.00 

Note: Accurate to within +/- 0.01 range. 

 
Table 7.3 90% Simultaneous Confidence Intervals, Middle Portfolio 

 Lower Bound Resampled Efficient Portfolio Upper Bound 

Canada  0 .01 .42 

France  0 .07 .35 

Germany 0 .03 .35 

Japan   0 .14 .35 

U. K. 0 .08 .42 

U. S. 0 .22 .70 

U.S. Bond 0 .09 .84 

Euro Bond .02 .37 .86 

Note: Accurate to within +/- 0.07 range. 

 
Table 7.4 90% Simultaneous Confidence Intervals, Maximum Average Return Portfolio 

 Lower Bound Resampled Efficient Portfolio Upper Bound 

Canada  0 .01 .81 

France  0 .34 1.0 

Germany 0 .04 .9 

Japan   0 .33 1.0 

U. K. 0 .16 1.0 

U. S. 0 .12 1.0 

U.S. Bond 0 .00 .9 

Euro Bond 0 .00 .91 

Note: Accurate to within +/- 0.09 range.  

 

AMBIGUITY AND PORTFOLIO EFFICIENCY 
 

Statistical analyses of efficient frontier portfolios provide a number of important insights into 

their investment value.  In particular, the imprecision and ambiguity of portfolio efficiency 

becomes dramatically apparent. 

 

MV optimization presents an illusion of precision that is seductive but generally fallacious and 

even dangerous.  This illusion comes from the constrained linear regression character of MV 

optimization.  MV optimization always finds some allocation of the assets that it considers 

optimal, without regard to statistical significance.  However, the reliability of the allocations 

may be minimal or nonexistent even when large in relative terms.  As in the case of the 

maximum average return efficient portfolio, the optimization is so ambiguous that an optimal 



EFFICIENT ASSET MANAGEMENT   Page 8   

 

   

 

solution may not be statistically distinguishable from almost any reasonable alternative.  As the 

analyses indicate, only low-risk efficient portfolios provide relatively unambiguous allocations 

for this data set.  

 

The imprecision of portfolio efficiency highlights the importance of the statistical analysis of 

MV optimized portfolios.  In econometrics, statistical analysis of linear regressions is standard 

operating procedure.  Such analyses also need to be an integral part of portfolio optimization if 

it is to become a useful and effective investment tool.  Unfortunately, the result of a statistical 

analysis of portfolio efficiency may often be to show how little reliable investment information 

is available.  At a minimum, knowing that little is certain is better than the illusion of certainty 

that currently pervades the perception of portfolio optimization.  One reliable lesson is that 

managers should seldom take portfolio optimizations literally and should often feel free to 

include valid judgment in the portfolio management process.12  These results also serve to 

motivate the importance of employing more powerful tools for defining portfolio efficiency. 

 

 

PRACTICAL CONSIDERATIONS 
 

The two methods of portfolio revision analysis discussed in this chapter – confidence region 

testing and simultaneous confidence intervals – have very different practical considerations and 

tradeoffs.   

 

The computational intensity of the confidence region procedure is relatively minimal, especially 

when compared to simultaneous confidence intervals.  In particular, the algorithms used in the 

text for computing simultaneous confidence intervals are unlikely to be practical in many cases.  

Various attempts at speeding up the search algorithm were not successful.   

 

From a perspective of ease of analysis, the simultaneous confidence intervals are more 

convenient than the confidence region test in formula 7-1.  This is because the simultaneous 

confidence tables summarize all the necessary information for testing any candidate portfolio.  

In contrast, the more exact confidence region procedure requires the computation of the test 

statistic for each portfolio of interest.    

 

 

APPENDIX A 
 

CONFIDENCE REGION FOR THE SAMPLE MEAN VECTOR 

 

The computation of a confidence region for a sample mean vector often assumes a random 

sample of vectors from a multivariate normal distribution (Johnson and Wichern 1992, chapter 

5).  In this case, the sample mean vector has an F distribution with p and n-p degrees of 

freedom, where p denotes the rank of the covariance matrix and n the number of random 

samples.  If the sample size is large enough, the distribution is approximately multivariate 

                                                 
12 Chapter 11 rigorously addresses this issue. 
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normal and the F distribution is applicable.  The test statistic for the vector of the sample mean 

is as follows: 

 

    (x
_
 -0)*C-1*(x

_
 -0)' < constant.     (7A-1) 

 

Here, x
_
 is the sample mean vector of the random vectors and C is the sample covariance matrix 

of random vectors.  The distribution of the statistic in formula 7A-1 is an F distribution 

dependent on the number of observations and degrees of freedom or rank of the positive definite 

covariance matrix.  The formula 7A-1 is interpretable as a normalized distance function of the 

sample mean vector.  The simultaneous confidence interval is the collection of vectors that 

satisfy 7A.1.  

 

Suppose a two asset optimization with only a budget constraint.  The confidence region centered 

at the resampled efficient portfolio is, in general, the area contained in a tilted ellipse, where the 

tilt depends on the correlation of return between the two assets.  For portfolios with three or 

more assets, the values of the portfolio weights that lie in a resampled efficient frontier 

confidence region has an N-dimensional ellipsoid geometry that is often hard to visualize.  

 

For the resampled efficient frontier, the portfolio weights from the resampled MV efficient 

portfolios define the sample mean vector and covariance matrix.  The budget constraint reduces 

the rank of the covariance matrix by 1.  For sign-constrained efficient portfolios, additional 

issues arise.  For example, the sign constraint leads to a minimum variance resampled portfolio 

in Table 6.1 that depends largely on the return of one asset.  In this case, sign constraints may 

significantly reduce the rank of the portfolio covariance matrix.  Consequently, the assumptions 

of the test statistic 7A-1, as applied to resampled MV efficient frontier portfolios, is invalid.   

 

APPENDIX B 
 

COMPUTING CONFIDENCE REGIONS AND SIMULTANEOUS INTERVALS 
 

The test statistic in formula 7-1 provides a formula for inference and confidence region 

estimation for resampled efficient frontier portfolios.  Portfolio variance is based on the historic 

covariance return matrix.  The relative variance is the variance of a portfolio relative to another.  

In formula 7-1, the relative variance is defined with respect to a resampled efficient frontier 

portfolio.   

 

To compute the test statistic constants in Table 7.1, the relative variance of a resampled efficient 

frontier portfolio is estimated from the 500 simulations of the rank-associated resampled MV 

efficient frontier portfolios.  The constant is the percentile value of sorted estimates of the 

relative variance in formula 7-1 of the 500 resampled MV efficient portfolios.  For example, the 

constants in Table 7.1 come from the ninetieth percentile value of the relative variance from the 

500 simulated efficient frontier portfolios in Exhibit 5.2.  

 

Simultaneous confidence intervals follow from computing the confidence regions in Exhibit 7.1.  

The procedure is to compute the maximum and minimum portfolio weight for each asset for all 
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portfolios within the confidence region for a given confidence level.  Any portfolio outside the 

simultaneous confidence interval bounds is not consistent with resampled efficiency at the 

indicated confidence level.  The computation depends on the search algorithm for finding the 

confidence region portfolios in Exhibit 7.1.  To be valid, the results must reflect a 

comprehensive search of all feasible portfolios that satisfy the test statistic 7-1 for a given 

resampled efficient portfolio.  The results in Tables 7.2-7.4 used an exhaustive search algorithm 

to ensure validity and reasonable accuracy.  Simultaneous confidence intervals in practice 

require development of more computationally efficient algorithms for many cases of practical 

interest.  
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CHAPTER 8 INPUT ESTIMATION AND STEIN ESTIMATORS 

 

The investment value of optimized portfolios depends on proper input estimation.  For many 

analysts and investors, input estimation methods may seem uncontroversial and hardly worth 

extended discussion.  For example, for asset allocation studies, the sample means, standard 

deviations, and correlations of historic returns seem obvious and reliable input estimates.1  

However, many common estimation methods are suboptimal and are one of the most important 

causes of the limitations of mean-variance (MV) optimization in practice.  In some important 

instances, better methods have been available to the investment community for many years.  

The reason that better procedures are unused is probably that the seriousness of the limitations of 

traditional estimation methods and their investment implications are not understood.2   

 

Intuition is unreliable because portfolio optimization requires multivariate estimation; that is, the 

simultaneous estimation of means, standard deviations, and correlations.  For related assets, 

there is likely to be information in the group of returns that can improve parameter estimates for 

each variable.  "Stein" estimators use group information to improve estimation.3  These 

methods, properly used, may lead to dramatically different and more intuitive optimized 

portfolios.   

 

This chapter presents some basic principles of multivariate estimation and introduces four Stein 

estimators for MV optimization.  It also addresses some limitations of ad hoc methods for 

estimating risk in equity portfolio optimization.  Stein estimation also provides a framework for 

an additional test of the performance of resampled versus MV efficiency.  

 

ADMISSIBLE ESTIMATORS 

 

A statistic is admissible if no other is always better.4  Intuitively, admissibility is a minimal 

condition for using a statistic.  The reader may wonder why anyone uses a statistic that is not 

admissible.  However, the investment community persists in using many inadmissible statistics.  

 

Charles Stein (1955) astonished the scientific community by showing that sample means are not 

an admissible statistic for a multivariate population mean under very general conditions.  Stein's 

result implies that there are uniformly better methods for estimating optimization means than the 

sample mean in many cases.   

 

                                                 
1 Stock portfolio optimization typically uses sophisticated multivariate statistical methods for input estimation.  

Risk models, which use linear regression or factor analysis techniques, supplant simple covariance estimation in 

many cases.  Equity return estimation may also use many advanced statistical methodologies.  The topics of the 

chapter, admissibility and Stein estimators, are of interest for estimating optimization inputs in any context. 
2  Important exceptions are Jobson, Korkie and Ratti (1979, 1980) and Jobson and Korkie (1981), who use 

James-Stein (1961) estimation to improve MV optimization.   
3 Named after Charles Stein, a pioneer of modern multivariate statistical estimation. 
4 More precisely, an estimator is admissible if no other estimator is uniformly better for a given loss function. 
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It is hard to understand why many financial economists and investment practitioners have 

ignored for so long methods that have the potential to significantly improve the investment value 

of optimized.  This is especially true because simple and useful Stein methods appropriate for 

portfolio optimization have been available for at least 35 years.5  Interestingly, financial 

economists and investment practitioners are not alone.6   

 

BAYESIAN PROCEDURES AND PRIORS 

 

Stein estimators are generally examples of Bayesian statistical procedures.  Bayesian procedures 

assume a prior.  A prior is either a reasonable guess at the answer or an assumption that imposes 

exogenous structure on potential solutions.  Bayesian methods transform the optimization by 

reducing dependence on pure statistically estimated data.  Many of the most powerful methods 

in modern statistics are Bayesian.  Bayesian procedures are the basis of many of the proposed 

techniques for improving MV optimization. 

 

Bayesian priors for parameter estimates and efficient portfolios arise naturally in many 

investment contexts.  The assumption that all assets have the same mean is a simple Bayesian 

prior for optimization parameters.  The assumed efficiency of an investable index is a common 

portfolio prior.   

 

The development of admissible Stein estimators for optimization input estimation is an area of 

ongoing research.  When used appropriately, Stein methods may significantly increase the 

investment value of optimization technology.  Development of appropriate priors are important 

issues in many applications.  Chapters 9 and 10 discuss applications of Bayesian portfolio 

priors.  In this chapter, the focus is on applications of Stein estimation and Bayesian parameter 

priors. 

 

FOUR STEIN ESTIMATORS  

 

Stein estimators are typically "shrinkage" operators.  The amount of shrinkage may depend on 

the consistency of the prior with sample data.  For example, suppose the prior for the means of 

N assets is the global mean.  A Stein estimator of the means may shrink sample means more 

toward the global mean if they are dissimilar than if they are not.  The prior provides an anchor 

to the estimation process that tends to reduce estimation ambiguity and optimization instability 

while increasing investment relevance.   

 

A number of Stein estimators are available for MV optimization estimation.7  These include the 

James-Stein (1961), Frost-Savarino (1986), Ledoit (1994,1997), and Stein (1982) estimators.  

The James-Stein procedure is an estimator for portfolio means.  The Frost-Savarino procedure is 

                                                 
5 For example, James and Stein (1961). 
6 See Efron and Morris (1975) and Copas (1983) for discussions of some of the Stein estimator controversy.  
7 Some early applications to MV optimization include Jorion (1986) and Brown (1976). 
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a joint estimator of the means and covariances.  The Ledoit and Stein procedures are estimators 

for the covariance matrix.  

 

JAMES-STEIN ESTIMATOR 

 

The James-Stein estimator for the means is the most widely known Stein estimator.8 Because the 

formula is so widely applicable, it may be useful to discuss the formula in some detail.  The 

formula for the Stein estimator of the mean of asset i, ei, is:  

  ei = x
_
  + ci (x

_
 i - x

_
 )       (5) 

where x
_
 = global sample mean, x

_
 i = sample mean of asset i, ci  0. 9  This estimator shrinks 

the sample mean x
_
 i to the global mean, x

_
, depending on asset variance, i

.  Shrinkage 

increases as a function of distance from the global mean and asset variability.10   

 

The James-Stein estimator for the mean may often have a significant effect on optimization 

inputs and results.  Consider the return premium data in Table 2.3.  The monthly global mean is 

0.59% (7.0% annualized).  Many of the equity assets deviate significantly from the global mean 

and have large standard deviations.  Consequently, they are candidates for significant shrinkage.  

On the other hand, although bond assets have an average return that also deviates substantially 

from the global mean, the level of variability is less and shrinkage to the global mean likely to be 

less.   

 

Table 8.1 displays the James-Stein estimates of monthly average return premiums corresponding 

to Table 2.3.  For convenience, Table 8.1 also reproduces the monthly standard deviations.  

Note that five of the six equity average returns shrank to the global mean.11    

 

The James-Stein procedure highlights the substantial volatility and ambiguity implicit in the data 

in Table 2.3.  The estimator radically alters the perceived information in the historic data and 

conveys interesting investment implications.  One interpretation is that, given the level of 

variability, the relatively large average returns of many equity asset classes may be unreliable 

forecasts of future performance. 

 

Table 8.1 Monthly Dollars (Net) James-Stein Returns (Percentages), January 1978-December 

1995 
 Canada France Germany Japan U.K. U.S. U.S. Bonds Euros 

Mean 0.59 0.59 0.59 0.59 0.59 0.60 0.31 0.30 

                                                 
8 There are some closely related versions.  The one that may be most useful for MV optimization is the positive 

rule empirical James-Stein estimator that allows for unequal variances and assumes a global equal mean prior 

(Efron and Morris 1977 p. 123). 

9 ci = max{0, 1 - (k - 3) i
( (x

_
 i - x

_
 )2)}, k = # of assets,  k > 3,  I

= asset i variance. 
10 See also Efron and Morris 1973. 
11 One alternative is to shrink the equity assets separately from the bond assets since the level of variability is so 

different.  However, in this case, the James-Stein estimator leads to shrinkage to the global mean for all equity 

assets.  The Table 8.1 results seem preferable from a number of perspectives. 
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Standard Deviation 5.47 7.00 6.19 7.01 5.99 4.28 1.99 1.52 

 

JAMES-STEIN MV EFFICIENCY 

 

Exhibit 8.1 displays the efficient frontier that results from replacing the historical sample means 

with the James-Stein estimates in Table 8.1.  Exhibit 8.1 also displays the resampled efficient 

frontier and the 90% acceptance region based on procedures defined in chapters 5-6.  Tables 

8.2-8.5 provide statistical analyses of the middle and maximum average return portfolios similar 

to Tables 6.2, 6.3, 7.3, and 7.4.  Since the James-Stein estimator changes only return estimates, 

the minimum variance portfolio in Exhibit 8.1 is the same as in Tables 6.1 and 7.2.  

 

Exhibit 8.1 shows that the empirical James-Stein estimator may lead to very different optimal 

asset allocations than that of classic MV efficiency analysis.  Although not statistically 

significant in most cases, the efficient frontier results shown in Tables 6.1, 8.2 and 8.4 indicate 

that (1) U.S. equities dominate at high risk.  (2) U.S. equities and bonds and Eurobonds 

dominate at intermediate risk.  (3) Eurobonds dominate at low risk.  

 

Note that the current portfolio is no longer in the 90% acceptance region.12  Accordingly, the 

test suggests revising the current portfolio before investment.  Comparing this result to Exhibit 

5.1 indicates that the reduction of statistical noise in the MV optimization process due to 

James-Stein estimation provides a finer resolution of the notion of investment-acceptable 

portfolios. 

 

                                                 
12 In this case, horizontal rectangles that span the return axis, rather than vertical rectangles that span risk axis, may 

more properly estimate the sample acceptance region.  This is because the James-Stein estimated risk of many 

equity assets is not within the range of values of efficient risk portfolios and does not get included in the estimation 

of the sample acceptance region.  The current portfolio remains outside the sample acceptance region independent 

of which method of computing the sample acceptance region is used.   
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Tables 8.3 and 8.5 display the simultaneous 90% confidence intervals for the middle and 

maximum average return efficient frontier portfolios.  The results in Table 8.3 rule out few 

reasonably diversified portfolios as inefficient.  For example, an equally weighted portfolio of 

all eight assets is consistent with efficiency.  Given the range of error in the estimation process, 

the data in Table 8.5 for the maximum average return portfolio hardly rule out the efficiency of 

any feasible portfolio.  These results reinforce the perception of the ambiguity of portfolio 

efficiency for high-return portfolios. 

 

The results in Exhibit 8.1 show that the James-Stein resampled frontier is very close to the 

efficient frontier over much of its range. The reward-to-risk ratios for the resampled efficient 

frontier are close to those of the MV efficient frontier and are often no lower.  The pronounced 

differences occur at the high-return end. Another notable difference is that the range of portfolio 

risk of the resampled frontier is significantly restricted.   
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Table 8.2  Statistical Analysis, James-Stein Middle Efficient Portfolio 
Asset Resampled Efficient 

Portfolio 

5th 

Percentile 

95th 

Percentile 

Standard Error T-statistic MV Efficient  

Portfolio 

Canada  .04 0 .19 .08 0.45 0 

France  0 0 .02 .01 0.27 0 

Germany .05 0 .16 .06 0.77 .07 

Japan   .06 0 .13 .05 1.17 .08 

U. K. .01 0 .07 .04 0.31 0 

U. S. .19 0 .43 .14 1.33 .32 

U.S. Bond .30 0 .74 .3 1.0 0 

Euro Bond .35 0 .97 .27 1.28 .53 

Note:   MV efficient portfolio mean = 5.3%; standard deviation = 8.0%. 

 Resampled efficient portfolio mean = 4.9%; standard deviation = 7.2% 

 
Table 8.3  90% Simultaneous Confidence Intervals, James-Stein Middle Efficient Portfolio 

 Lower Bound Resampled Efficient Portfolio  Upper Bound 

Canada  0 .03 .32 

France  0 0 .16 

Germany 0 .05 .24 

Japan   0 .06 .24 

U. K. 0 .02 .24 

U. S. 0 .19 .48 

U.S. Bond 0 .31 .88 

Euro Bond .04 .34 1.00 

Note: Accurate to within +/- 0.08 range. 

 

Comparing the results in Tables 6.2 and 6.3 with 8.2 and 8.4 shows that both Stein estimation 

and the resampled efficient frontier tend to moderate the extreme bets associated with MV 

optimized portfolios.  However, James-Stein MV efficient portfolios still have extreme bets 

relative to their corresponding resampled frontier portfolios (Tables 8.2 and 8.4).  James-Stein 

estimation moderates, but does not eliminate, the tendency of MV efficiency to create extreme 

portfolios.  The outlier characteristics of MV efficient portfolios are most significant at 

high-expected return, where the resampled and MV efficient frontiers have the greatest 

deviation.  While the James-Stein estimator may be superior for estimating asset means in many 

cases, the results provide an unfamiliar perspective on historical data that is likely to require 

significant adjustment of investment intuition by many investment practitioners.   
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Table 8.4  Statistical Analysis, James-Stein Maximum Average Return Efficient Portfolio 

Asset Resampled Efficient 

Portfolio 

5th 

Percentile 

95th 

Percentile 

Standard Error T-statistic MV Efficient  

Portfolio 

Canada  .19 0 1 .36 0.52 0 

France  .04 0 .02 .19 0.2 0 

Germany .1 0 1 .24 0.43 0 

Japan   .06 0 .23 .16 0.38 0 

U. K. .05 0 .17 .2 0.25 0 

U. S. .45 0 1 .46 0.98 1 

U.S. Bond .06 0 1 .24 0.26 0 

Euro Bond .05 0 1 .23 0.24 0 

Note:   MV efficient portfolio mean = 7.2%; standard deviation = 14.9%. 

 Resampled efficient portfolio mean = 6.7%; standard deviation = 12.6% 

 
Table 8.5  90% Simultaneous Confidence Intervals, James-Stein Maximum Average Return Efficient Portfolio 

 Lower Bound Resampled Efficient Portfolio  Upper Bound 

Canada  0 .18 .90 

France  0 .04 .90 

Germany 0 .10 .90 

Japan   0 .06 .80 

U. K. 0 .05 1.0 

U. S. 0 .45 1.0 

U.S. Bond 0 .06 1.0 

Euro Bond 0 .05 1.0 

Note: Accurate to within +/- 0.1 range. 

AN OUT-OF-SAMPLE TEST OF RESAMPLED AND MV EFFICIENCY 

 

By definition, the James-Stein estimates of the optimization input parameters are likely to be 

closer to the true population values than the Table 2.3 historic data.  This observation suggests a 

test of the out-of-sample investment value of resampled compared to MV efficient frontiers.13   

 

Assume that the true underlying optimization inputs are well approximated by the data in Tables 

8.1 and 2.4.  Compare the resampled performance of the middle and maximum average return 

portfolios on the MV and resampled efficient frontiers as defined in Tables 6.2 and 6.3.  The 

MV and resampled efficient portfolios compete in a James-Stein estimated investment 

environment.  The simulations are otherwise as defined in Figure 4.1.  The data in Table 8.6 

summarizes the results of 100,000 simulations. 

 

                                                 
13 Suggested by Robert Michaud. 
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Table 8.6  Mean-Variance (MV) versus Resampled Efficient Portfolio Returns (Annual 

Percentages): James-Stein Inputs 
 Middle MV  

Efficient 

Middle Resampled Maximum MV  

Efficient 

Maximum Resampled 

Mean 5.67 5.74 6.78 6.80 

Standard Deviation 9.0 9.4 24.3 17.1 

Median 5.66 5.73 6.85 6.59 

 

Table 8.6 shows that resampled efficient portfolios have higher average return than their 

rank-associated MV efficient portfolios.  Note that the maximum average return resampled 

efficient portfolio also had much less risk.  These results are consistent with the hypothesis that 

resampled efficient portfolios are more likely to outperform out-of-sample relative to MV 

efficient portfolios.  The results indicate that resampled efficient frontiers are more robust and 

likely to improve investment performance even when the true optimization inputs differ from 

those used in their definition. 

 

It is interesting to note the inverse relationship between risk and median performance in the 

simulations.  Although the middle MV efficient portfolio had less variability and larger median 

return, the maximum MV efficient portfolio had more risk and less median return relative to the 

resampled efficient portfolios.   

 

FROST-SAVARINO ESTIMATOR 

 

The Frost and Savarino (1986) Stein estimator is one of the most interesting proposed for MV 

optimization.  Notably, it is a joint estimator of the means and covariances.  The prior is the 

efficiency of an equal-weighted portfolio. 

 

Exhibit 8.2 illustrates the Frost-Savarino MV efficient frontier for the data in Exhibit 2.5.  

Comparing these results to Exhibit 2.5, note that the Frost-Savarino frontier shifts downward and 

slightly inward at the high-return end and upward and slightly inward at the low-return end.  

Essentially, the Frost-Savarino frontier shrinks towards the equal-weighted portfolio.  The 

procedure generally has less impact on MV optimization inputs than the James-Stein estimator.  

 

Frost-Savarino Stein estimation has some attractive properties.  It is the only procedure that 

estimates all the MV optimization parameters in a unified framework, an approach that seems 

most appropriate for portfolio optimization.  It is a less severe adjustment of optimization inputs 

than James-Stein.  On the other hand, the procedure has significant limitations.  The prior 

assumes that all means, variances, and correlations are the same.  It is therefore most useful if 

the efficiency of an equal-weighted prior is investment relevant.  In many practical cases, a 

capitalization-weighted prior may be more relevant.  In addition, the algorithm is not very stable 

computationally and is useful primarily for relatively small numbers of assets: Optimizations 

consisting of 50 or more assets may be infeasible.  Frost-Savarino estimation is also very 

computationally intensive when used in conjunction with Monte Carlo simulation procedures 

and resampled frontier estimation. 
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COVARIANCE ESTIMATION 

 

A simple formula relates the covariance of returns of two securities to their variances or standard 

deviations and correlation.14  The covariance matrix is a convenient way of summarizing all the 

risk estimates associated with assets in an MV optimization.15  The standard deviations in Table 

2.3 and the correlations in Table 2.4 provide the information necessary for computing the 

historic sample covariance matrix for the eight assets.   

 

Asset allocation studies often estimate the sample covariance matrix from historic data, as in 

Tables 2.3 and 2.4.  In contrast, commercial services often use factor models and many 

advanced statistical techniques to estimate stock and stock portfolio risk.  The analysis of equity 

risk estimation is beyond the scope of this text and is a significant digression from the study of 

MV optimization.16  Multivariate equity risk estimation addresses the particular needs of 

optimizing large institutional portfolios.  Although conventional covariance estimation 

                                                 
14 The covariance of the return of two assets is the product of their return standard deviations times their correlation.  
15 The covariance matrix is square with n rows and columns equal to the number of assets.  The i,j element is the 

covariance of the ith and jth assets.  It follows that the ith diagonal element is equal to the variance of the ith asset. 
16 See Rosenberg and McKibben (1973), Rosenberg and Guy (1973) and Rosenberg (1974). 
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enhancements may be directly useful for asset allocation, they are also applicable to equity risk 

estimation, factor models and return forecasting.17   

    

Asset managers often express relatively minimal interest in covariance estimation enhancements.  

The conventional wisdom among asset managers is that risk estimation is a lower-order 

consideration, particularly with respect to forecasting return.  Unfortunately, in the context of 

MV optimization, conventional wisdom may be in serious error.  There are two issues to 

consider: (1) Is there enough data to estimate the covariance matrix?  (2) Are covariance 

estimation errors dominating the optimization procedure?   

 

Conventional covariance estimation may require a lot of historic data.  Unless there are at least 

as many periods as assets, two problems may arise:  The estimates of the sample covariances 

may be unreliable, and the covariance matrix may be singular or ill conditioned.  An 

ill-conditioned covariance matrix can be a serious cause of MV optimization instability 

(Michaud 1989a).  

 

Another, subtler source of MV optimization instability results from covariance estimation.  As 

the number of assets increases, the mean estimates increase linearly while the covariance 

estimates increase quadratically.  For a large number of assets, the accumulation of covariance 

estimation error may dominate the optimization process.18  Such effects may have an impact on 

equity portfolio optimizations that use factor models for covariance estimation as well as asset 

allocation studies that use more conventional methods.  

 

If monthly returns are used, even relatively small optimizations may require more data than is 

historically available to avoid singularity or ill conditioning.  In too many cases, the problems of 

too little data and the accumulation of estimation errors are unrecognized, leading to unstable 

optimizations and irrelevant portfolios.  Only very recently have Stein covariance estimation 

methods become available that address some of these important issues.   

 

STEIN COVARIANCE ESTIMATION 

 

Ledoit (1994, 1997) developed Stein estimation methods for the sample covariance matrix.  The 

Ledoit estimator is a general procedure for optimally shrinking the covariance matrix toward a 

prior.19  

 

The Ledoit estimator has many attractive properties.  As simulation experiments demonstrate, 

the estimator significantly improves sample covariance estimation and the stability of MV 

optimization. Another important benefit is that it is the first procedure to allow estimation of the 

covariance matrix even if the number of assets is greater than the number of observations.  In 

                                                 
17 The covariance matrix is often part of advanced generalized least squares methods used in risk estimation, factor 

models and return forecasting. 
18 Personal communication from Philippe Jorion, May 1996, based on some preliminary results. 
19 See the appendix in this chapter for further, more technical discussion. 
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addition, the procedure is very flexible: Ledoit estimation may be useful with many alternative 

priors.  

 

Another important Stein estimator of the covariance comes from Stein (1982) and Dey and 

Srinivasan (1985).  Their procedure is a minimax estimator similar in important ways to 

Ledoit.20  Using Monte Carlo simulation, Ledoit (1994) finds that both Stein estimators 

significantly improve sample covariance estimation and the stability of MV optimization.   

 

If the number of assets is small, the benefits of the Ledoit and minimax estimators may be 

relatively minimal.  For the historic data of Tables 2.3 and 2.4, neither estimator significantly 

alters the sample covariance matrix or the optimization results.21  Ledoit estimates that the 

benefits of his covariance estimator kick in when the number of assets and periods is on the 

order of 30.22  One area of significant application may be to global equity portfolio 

optimization, where the number of assets can be very large and the number of historic periods of 

useful data is often small.  Because the Ledoit estimator may be useful in situations with 

minimal historic data, applications to short-term asset allocation may evolve over time. 

 

FORECASTING STOCK RISK AND RETURN  

 

Stein covariance estimation may also be useful for asset management by improving regression 

estimates of equity risk and return forecasts.  Generalized least squares (GLS) regression is 

more powerful and robust in many applications relevant to investment management (Kandel and 

Stambaugh 1995).  In particular, Ledoit shows that his covariance estimator used in the context 

of GLS regression may significantly change the factor-return relationships observed in some 

well-known empirical studies.23 

 

Other Stein estimators designed for improving the forecast power of linear regression estimation 

are also available.  In particular, the James-Stein linear regression estimator is widely used by 

many working econometricians.24  

 

UTILITY FUNCTIONS AND INPUT ESTIMATION 

 

The reader may have noted that the discussion on optimization input estimation is free of 

Bayesian priors applied to utility function-based optimization.  This may seem surprising 

because many of the early studies in estimation error and its impact on MV optimization applied 

Bayesian priors to utility functions.25  One reason is the problem of utility function specificity 

                                                 
20 In both cases, the sample covariance shrinks towards a prior.  In the Stein-Dey-Srinivasan case, the estimator is 

minimax; that is, no other estimator has lower worst-case error.  This is in contrast to the Ledoit estimator, which 

uses square error loss (Hilbert-Schmidt or Frobenius norm). 
21 Priors used included the identity, single-index, and capitalization weighting.   
22 The benefits depend on the ratio of the assets to periods as well as to the prior. 
23 Ledoit (1994) repeats Fama-French (1992).  
24 Judge et. al. (1988 pp. 836-838) discusses Stein rules for multivariate linear regression. 
25 For example Bawa, Brown, and Klein (1979). 
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discussed in chapter 3.  In addition, as Barry (1974) notes, although the optimal portfolio chosen 

by Bayesian estimation methods applied to utility functions may vary, the efficient frontier 

composition may be unchanged.  Procedures that leave the efficient frontier portfolios unaltered 

are likely to have limited practical investment value. 

 

AD HOC ESTIMATORS 

 

There are a number of ad hoc estimators of the covariance matrix.  Perhaps the best known is 

Sharpe's (1963) single-index model.  There are also multi-index and equal-correlation models.  

Such methods provide simple approaches to estimating risk and the covariance matrix.  They 

may have practical value when the number of observations is small relative to the number of 

assets and the alternative is a singular covariance matrix.  Historically, ad hoc procedures have 

often been the only ones available for dealing with many limitations of investment data.  

However, as Ledoit (1994) notes, such procedures may impose arbitrary structure and ignore 

information available in historic data.  The Stein covariance estimation methods are 

theoretically and intuitively superior.  Properly formulated Stein methods ignore neither 

reasonable structure nor information in historic data.  Such estimators weight the prior and data 

optimally to produce superior risk estimation.  Although ad hoc methods have the virtue of 

simplicity and familiarity, they may be inferior to well-defined Stein estimators, when available.      

 

CONCLUSIONS 

 

Stein estimators represent an important set of procedures for improving the practical value of 

MV optimization.  It is hard to rationalize the continued use of inadmissible estimators for the 

mean or covariance in practice.  It is also increasingly hard to rationalize ad hoc estimators used 

by many investment practitioners.  Stein estimators are available for all optimization 

parameters.  On the other hand, the development of Stein estimators for portfolio optimization is 

at a relatively early stage.  In particular, the identification of the optimal Stein estimator in many 

practical contexts is generally open.  The investment community has a strong interest in the 

importance of this area of statistical analysis and in encouraging further research.   

 

APPENDIX:  LEDOIT COVARIANCE ESTIMATION 

 

If the sample covariance matrix has rank n, where n equals the number of assets, then the matrix 

has n positive eigenvalues.  For the historic data in Tables 2.3 and 2.4, the eight eigenvalues 

corresponding to the eight asset classes range from 0.23 to 121.6.  The eigenvalues of a matrix 

are often useful in understanding its statistical characteristics.26   

 

Ledoit (1994) shows that the conditioning or invertability of the covariance matrix and the 

resulting stability of the optimization depend on the statistical properties of the eigenvalues of 

                                                 
26 For a useful brief introduction into properties of matrices, including eigenvalues and eigenvectors, see Johnson 

and Wichern (1992, chapter 2). 
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the covariance matrix.  The biases of the sample eigenvalues, as in the sample means, are 

toward too large and too small values.  In particular, the ill conditioning of the covariance 

matrix is attributable to the bias of the small eigenvalues toward zero.  The bias increases as the 

number of assets increases relative to the number of periods.  As in the case of the sample 

means, improved covariance estimation requires shrinking the eigenvalues toward an appropriate 

prior.  

 

The Ledoit procedure is not a specific estimator.  The procedure allows many alternative 

covariance priors.  These include identity matrix, equal correlations, Sharpe’s single index 

model, K index models, and capitalization weights.  
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CHAPTER 9 BENCHMARK ACTIVE ASSET ALLOCATION 

 

Benchmark optimization is a mean-variance (MV) optimization that includes a benchmark return 

for each asset. A typical benchmark return is the return of an index portfolio.  As illustrated in 

Exhibit 2.2, a benchmark optimization may be based on residual return or the return of an asset 

minus the return of the benchmark. 

 

Benchmark optimization may dramatically redefine the notion of portfolio efficiency.  The 

value of the procedure depends on the investment relevance of the benchmark prior.  In practice, 

the choice of the benchmark prior is often unambiguous.  In many applications, benchmark 

optimization is the procedure of choice, and classical MV efficiency is inappropriate.  

 

Benchmark optimizations are among the most powerful tools for reducing the instability of 

classic MV asset allocations and enhancing investment value (Michaud 1989c).  The method 

works by anchoring the optimization to the benchmark.  The increase in optimization stability 

and reliability is often analogous to that which occurs in modern Bayesian statistical methods 

with a reliable prior.   

 

At least three benchmark optimization frameworks are commonly used by investment 

practitioners for asset allocation: 

 

1. benchmark- or index-relative 

2. implied return  

3. economic liability-relative.   

 

The first two are active asset allocation frameworks, and they are the focus of this chapter.  The 

third, discussed in Chapter 10, is appropriate for defining long-term investment policy.  

 

BENCHMARK-RELATIVE ACTIVE ASSET ALLOCATION  

 

As discussed in Chapter 2, benchmark MV optimization (see Exhibit 2.2) is generally the 

optimization framework of choice for active equity management.  Although less used for active 

asset allocation, benchmark optimization is often no less appropriate.   

 

Assume a benchmark return such as the return of an index or a manager’s performance 

benchmark.  The benchmark return defines a baseline return for each asset in each period. 

Compute MV optimization inputs based on the difference between asset and benchmark 

(residual) return.  By definition, the benchmark portfolio is MV residual return efficient.1   

                                                 
1 The issue of whether the benchmark is or is not MV efficient on an absolute return basis and its implications is 

discussed further at the end of this chapter in the section on Roll’s (1992) analysis. 
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Note that benchmark-relative optimization redefines both return and risk.2  Optimization inputs 

may include both historic and exogenous forecasts of return. 3 

 

The data of Tables 2.3 and 2.4 are useful for illustrating the impact of introducing a benchmark 

prior portfolio into an asset allocation.  Assume the index portfolio defined in Table 2.2 as the 

benchmark portfolio.  Table 9.1 provides the monthly means and standard deviations of 

index-relative return for the eight asset classes and historic data of Tables 2.3 and 2.4.  In Table 

9.1, France has the highest index-relative average return for the period; Japan and France 

average return differ only in the fourth significant figure.  Note that index-relative risk for Japan 

is significantly less than for France, a change from the relationships in Tables 2.1 and 2.3. 

 
Table 9.1  Monthly Dollar (Net) Index-Relative Returns (Percentages), January 1978-December  1995 

 Canada France Germany Japan U.K. U.S. U.S. Bonds Euros 

Mean -0.36 0.13 -0.22 0.13 0.04 -0.04 -0.51 -0.48 

Standard Deviation 4.31 4.90 4.81 4.63 4.06 3.21 4.05 3.92 

 

Exhibit 9.1 provides the index-relative MV efficient frontier, index-relative average returns, and 

risk for assets and reference portfolios as well as the statistical equivalence region based on 500 

simulations.  Visually comparing Exhibit 9.1 to Exhibit 4.1 shows significant differences in the 

implications for efficiency between the two frameworks.  In particular, Exhibit 9.1 indicates that 

many assets and reference portfolios are relatively less active return than return premium 

efficient.  Except for the obvious cases -- the index, France, and Japan -- no other assets or 

reference portfolios are very close to the active return efficient frontier.  

 

Exhibit 9.2 extends the analysis in Exhibit 9.1 by computing the resampled efficient frontier and 

90% sample acceptance region comparable to Exhibit 6.1.  The acceptance region shows that 

neither the current or equal-weighted portfolios, nor the bond assets, are consistent with 

index-relative efficiency at the 90% confidence level.  These results are not surprising; the bond 

assets are not in the index and the reference portfolios are not designed as active portfolios 

relative to a global equity market index.  As the resampled efficient frontier suggests, only a 

relatively narrow range of risk levels may be realistically available for efficient active 

investment based on the historic data.  Statistical analysis illuminates some of the significant 

investment limitations of the data. 

 

                                                 
2 In the case where benchmark return is index return, there are three equivalent ways of defining index-relative MV 

optimization.  For index-relative returns, either active portfolio weights (sum to zero) or portfolio weights (sum to 

1) reach equivalent results because the index has no risk and no return.  Alternatively, a traditional portfolio MV 

optimization based on active weights is also equivalent.  This is the approach taken in Roll (1992).  Although 

mathematically elegant, the Roll framework is not convenient for highlighting the Bayesian interpretation of the 

procedure.   
3 Chapter 11 discusses how to include exogenous expected returns in a benchmark-relative optimization framework. 
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The endpoints of the index-relative resampled and MV efficient frontiers are of interest.  The 

minimum variance portfolio is the index for both the resampled and efficient frontiers.  Because 

the maximum average return portfolios ignore the index, the maximum average return resampled 

and MV efficient portfolios are the same as in Table 6.3. 

 

The intermediate index-relative efficient portfolios require further analysis.  Table 9.2 provides 

the statistical analysis of the middle MV efficient frontier portfolio.  The analysis is comparable 

to that in Table 6.2.  The two additional columns in Table 9.2 are the index weights (column 8) 

and the active weights of the resampled efficient portfolio relative to the index (column 9). 



EFFICIENT ASSET MANAGEMENT   Page 5   

 

   

 

 

Comparing Table 9.2 to Table 6.2 demonstrates the impact of imposing the efficiency of the 

index on the optimization.  Both the middle index-relative resampled and MV efficient 

portfolios are near the index.  One investment consequence is that the MV and resampled 

efficient portfolio weights for U.S. and Japanese markets are now statistically significantly 

different from zero at the 5% significance level.  Note also the substantial change in the role of 

the bond assets.  Because bonds are not part of the index, they are not statistically significantly 

different from zero at the 5% level and are not a component of the middle portfolio 

index-relative efficient frontier.  The notion of index-relative efficiency is much less ambiguous 

than in the return premium case.  This result is consistent with the increase in statistical power 

associated with Bayesian priors represented by benchmark optimization methods.  

 

Table 9.3 provides a simultaneous 90% confidence interval analysis of the simulated efficient 

middle portfolios comparable to Table 7.3.  When compared to Table 7.3, the impact of 

index-relative efficiency can be seen not only in the significantly lower upper bounds for the 

bond assets but also the narrower upper range of allocations for other assets, such as U.S. 

equities.     

 

The results confirm that benchmark-relative optimization may impose investment-relevant 

structure on the optimization process.  To the extent that the prior is a valid reflection of 
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investment objectives, benchmark optimization reduces the likelihood of investment-irrelevant 

portfolios. 

 

Table 9.2  Statistical Analysis, Index-Relative Middle Efficient Portfolio 
Asset Resampled 

Efficient 

Portfolio 

5th 

Percentile 

95th 

Percentile 

Standard Error T-statistic MV Efficient 

Portfolio 

Index 

Portfolio 

Active 

Resampled 

Portfolio 

 

Canada  .01 0 .07 .04 0.27 0 .05 -.04 

France  .16 0 .39 .13 1.28 .18 .10 .07 

Germany .04 0 .19 .07 0.57 0 .10 -.06 

Japan   .33 .14 .55 .12 2.78 .34 .30 .02 

U. K. .15 0 .37 .13 1.18 .14 .10 .03 

U. S. .31 .1 .53 .13 2.3 .34 .35 -.04 

U.S. Bond 0 0 0 .01 0.13 0 0 0 

Euro Bond 0 0 0 .02 0.07 0 0 0 

Note:   MV efficient portfolio mean = 0.7%; standard deviation = 2.2.0%. 

 Resampled efficient portfolio mean = 0.5%; standard deviation = 1.8% 

 
Table 9.3  90% Simultaneous Confidence Intervals, Index-relative Middle Efficient Portfolio 

 Lower Bound Resampled Efficient Portfolio  Upper Bound 

Canada  0 .01 .40 

France  0 .17 .40 

Germany 0 .04 .32 

Japan   .08 .32 .56 

U. K. 0 .13 .48 

U. S. 0 .31 .64 

U.S. Bond 0 0 .40 

Euro Bond .04 0 .44 

Note: Accurate to within +/- 0.08 range. 

IMPLIED RETURN ASSET ALLOCATION 

 

Implied returns are an alternative approach to defining a benchmark asset allocation framework 

for active management.  The implied-return procedure is due to Fisher (1975) and Sharpe 

(1974).  Given an MV efficient portfolio prior and the sample covariance matrix, a reverse 

optimization finds the implied or benchmark returns for each asset.4  By definition, the implied 

returns and the covariance matrix lead to an efficient frontier that includes the portfolio prior.  

The implied returns are a baseline return for each asset.  In applications, the efficient portfolio 

prior is generally a representative market portfolio. 

 

Black and Litterman (1992) advocate the implied-return framework for active asset allocation.  

One rationale is that return estimates are typically less reliable than risk estimates.  This 

reliability mismatch may be a significant source of the instability of an optimization (Michaud 

1989a).  In addition, an asset allocation framework that implies an inefficient market or 

benchmark in the absence of active return forecasts may be unsuitable.  The implied-return 

procedure solves these problems by finding passive or neutral expected returns that are 

consistent with the sample covariance matrix and the assumed MV efficiency of the portfolio 

                                                 
4 The backward optimization formula for computing implied returns is simply the covariance matrix times the MV 

efficient portfolio weight vector.  
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prior.  In contrast to the benchmark-relative optimization framework, the benchmark return in 

the implied return framework is additive and affects only the estimate of return.  The new 

expected return for each asset is expected residual or active return plus the implied return.5   

 

The implied-return procedure imposes interesting structure on the optimization. The implied 

returns are interpretable as average return premiums (see Table 2.3).  The efficient portfolio 

prior is the maximum Sharpe ratio portfolio in the absence of active expected returns.  In the 

implied return procedure, risk is unchanged. 

 

Exhibit 9.3 shows the implied return efficient frontier using the covariance data in Tables 2.3 

and 2.4 and the MV efficiency prior of the index portfolio in Table 2.2.  The tangent line drawn 

from the origin shows that the index is on the efficient frontier and is the maximum Sharpe ratio 

portfolio.  Comparing the results with Exhibit 2.5 shows that the implied return procedure 

fundamentally alters the relative relationship of many assets and portfolios with respect to each 

other and to the efficient portfolio set.  Exhibit 9.3, however, has significant unintuitive 

investment characteristics.  The estimated implied return premiums, which range from 0% to 

300% annualized, are inconsistent with the scale of the standard deviation of annualized monthly 

returns or investment intuition.  

 

As Fisher (1975) and Sharpe (1974) show, the implied return premiums are unique up to a linear 

transformation.6  Consequently, linearly rescaling the implied returns so that they are consistent 

with the scale of monthly data does not change the composition of the implied return efficient 

frontier.  Exhibit 9.4 displays the implied returns linearly scaled so that the spread of the 

maximum and minimum values are equal to that of the historic monthly return premiums and 

consistent with a zero riskless rate.  Rescaling allows a more direct comparison with previous 

results.  

 

COMPARING IMPLIED AND BENCHMARK-RELATIVE  

 

It is interesting to compare the benchmark-relative efficient frontiers in Exhibits 9.2 and 9.4.  

Both use the same historic data and efficient portfolio prior.  In both cases the index is MV 

efficient.  However, the efficient frontiers and many asset-relative valuations are not the same.  

To further understanding, it is useful to examine the differences with respect to French and 

Japanese equities.  In the classic sense Japan and France are nearly MV identical.  In the 

index-relative Exhibit 9.2, Japan has less risk than France while in Exhibit 9.4 Japan has more 

expected return.  Because Japan is more correlated to the index, it has more expected return in 

an implied-return framework and less risk in an index-relative return framework.  In both 

benchmark optimizations, Japan has increased in attractiveness relative to France but in different 

ways.  Changes in other assets have somewhat similar explanations. 

 

                                                 
5 Chapter 11 discusses further how to mix active returns with historic estimated data. 
6 More accurately, a positive multiplicative linear transformation. 
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SCALING AND IMPLIED RETURNS  

 

The investment value of the implied return procedure should be of some concern.  The return 

premium covariance matrix is the sole source of historic information.  As noted in Chapter 8, 

the sample covariance matrix is also prone to estimation error and biased toward ill conditioning.  

It is not necessarily a better source of information to base the optimization. 

 

The nonuniqueness of the implied returns leads to further issues. Efficient asset allocations based 

on active and implied returns may change dramatically simply by changing the scale of the 

implied returns.  Suppose two assets with active expected returns of 0.5% and -1.0% and 

implied returns of 1.5% and 2%.  The active expected returns do not have an arbitrary scale.  

They presumably reflect the return on average associated with the forecast.  However, the 

implied returns may not have a unique scale.  Multiplying the implied returns by 4 inverts the 

rank of the expected returns (implied plus active) of the two assets and changes the optimal asset 

allocation significantly.  The example shows that the implied-return optimization framework is 

highly scale dependent and may not be unique.   

 



EFFICIENT ASSET MANAGEMENT   Page 9   

 

   

 

 

The question of interest is whether the scale dependent character of the implied-return procedure 

limits or invalidates its investment usefulness.  In addition, do implied returns have any inherent 

investment content?  Is the currently fashionable procedure of comparing implied returns with 

average historic returns justifiable?  What assumptions, if any, are necessary for implied returns 

to have useful investment information? 

 

The investment value of the procedure rests on whether there exists a natural or unique scale for 

implied returns.  If there is no unique scale, the asset allocations and implied returns are 

nonunique and arbitrary, and the procedure may have little investment content.  

 

Black and Litterman (1992) have proposed to equate the return of the efficient portfolio prior 

with the equilibrium return of a “market” portfolio.7  In this view, if the portfolio prior 

represents the “market,” if the market is in equilibrium, and if market return has a stationary 

distribution, then long-term return premium data may be useful for estimating equilibrium 

market returns.  Under these conditions, the long-term return data may define a natural scale for 

the implied return of the market portfolio and therefore for the assets and asset allocation.  In 

                                                 
7 The specific proposal in Black and Litterman (1992) for defining a natural scale for the implied returns, the 

“universal hedging” equilibrium, includes the universal currency hedging formula that all investors may want to use 

in equilibrium (Black 1989).  Their argument involves similar but more restrictive additional empirical issues and 

assumptions (see Black and Litterman 1992, fn. 9).  
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this case, the MV asset allocation may be unique and well defined, and the implied asset returns 

may be comparable to actual returns.   

 

The natural scale issue for the implied-return framework presents some significant practical 

considerations, including 

 

1. how to define the “market” portfolio 

2. the reasonableness of the market equilibrium assumption 

3. the validity of the stationary return distribution assumption 

4. the availability of appropriate long-term data for estimation, and 

5. the unambiguity of the return premium estimate.   

 

Note that an efficient global market portfolio may include a number of asset classes, such as real 

estate, fixed income, and venture capital in foreign markets, for which there is very limited 

reliable empirical data.  The ambiguity of the return premium estimate is also a significant 

consideration.  Suppose a long-term return premium estimate from 2% to 10% annualized.  The 

ambiguity of the resulting MV optimized asset allocations based on this range of implied returns 

may not be that much different from the ambiguity resulting from traditional MV optimization.   

 

There are other issues.  Historic risk estimates may not always be an accurate reflection of 

return expectations.  In addition, the implied-return framework may pose some special 

limitations for forecasting return.  Because return in the implied-return framework is a function 

of risk, a forecast  based on the risk, rather than the return, history of a security may require 

nonstandard econometric estimation techniques.8 

 

Alternatively, index-relative asset allocation is not scale dependent.  The procedure may be 

superior if the benchmark is not a market portfolio, if the market is not in equilibrium or if the 

long-term return premium estimate for the market is ambiguous.  In addition, active return 

forecasting may be more reliable.  

 

Benchmark-relative efficiency may be a less error prone and more widely applicable framework 

for active asset allocation.  Roll (1992) presents a critique of the index-relative framework and 

discusses a number of caveats.  Holding Roll’s caveats in mind, on balance, benchmark-relative 

efficiency may be the active asset allocation framework of choice in many applications. 

 

                                                 
8 I am indebted to Robert Michaud for this observation. 
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ROLL'S ANALYSIS 

 

Roll (1992) provides a theoretical analysis of the index-relative efficient frontier framework.  In 

particular, he shows that many portfolios may dominate index-relative efficient portfolios.  His 

result is not surprising because index-relative efficiency generally leads to different solutions 

from classic MV efficiency.  Roll's concern is that the convenience of an index-relative efficient 

frontier framework for institutional asset management may come at a too high price in terms of 

suboptimal investment.   

 

Roll raises important issues on the relationship of index and index-relative efficiency.  If the 

index is not MV efficient in the conventional sense, then positive index-relative performance 

may be an artifact of an insufficiently MV efficient index.  Consequently, the MV efficiency of 

the index is important.  

 

At a minimum, Roll's analysis indicates the importance of attending to the investment integrity 

of benchmarks.9  The theoretical limitations of the index-relative framework diminish as the 

MV efficiency and representativeness of the benchmark increases.  As Roll also notes in his 

conclusion (1992, 19-20), the problem with concern of the suboptimality of the index-relative 

MV efficiency framework may need to be balanced against the impact of estimation error on MV 

optimization in the classic framework.  As previous analyses have shown, the ambiguity of 

traditional MV efficiency is very severe in many cases of practical application and the likelihood 

of investment-irrelevant efficient portfolios is very real.  The benefit of the benchmark-relative 

framework is the imposition of a prior on optimized portfolio structure that is consistent with 

investment objectives and enhances the likelihood of practical and relevant optimized portfolios.  

Although Roll's cautionary analysis is interesting and useful, the problems of MV optimization 

error maximization appear to dominate the potential limitations of index-relative efficiency in 

many cases of practical interest.    

 

ADDITIONAL PROCEDURES 

 

Many other procedures may significantly enhance the practical value of the benchmark-relative 

framework.  In particular, Chapter 11 addresses the important topic of rigorously mixing active 

return forecasts with historic return data.  

                                                 
9 See also Kandel and Stambaugh (1995) and Roll and Ross (1994). 



 



CHAPTER 10 INVESTMENT POLICY AND ECONOMIC LIABILITIES 

 

Investment policy defines a fund’s expected long-term average asset allocation.  For many fund 

trustees, appropriately defining investment policy is a major investment priority and a significant 

fiduciary responsibility.  An investment policy study may often consist of substantial 

expenditures of time and capital.  Although the degree of importance may be controversial, a 

broad consensus in the investment community holds that investment policy is at least as 

important as any other investment decision.1  

 

Conceptually, mean-variance (MV) optimization is a natural framework for defining investment 

policy.  Intuitively, MV optimizations based on long-term historic return data appear to be the 

most obvious way to define an optimal long-term asset allocation.  Beyond the problems 

imposed by MV optimization, investment policy studies have additional limitations.   

 

MISUSING MV EFFICIENCY 

 

A MV optimization framework for defining investment policy is very vulnerable to 

overmanagement and misuse.  Because of instability, MV optimizations are often inconsistent 

with investment intuition and institutional perceptions.  There is often a great deal of pressure to 

find acceptable optimized investment policy allocations.  Many constraints and assumptions, 

rationalized as reflecting institutional objectives and constraints, may become part of the 

optimization process.  All too often, the investment policy MV optimization reflects little more 

than a priori constraints and prejudices.  Consequently, MV efficiency may provide a veneer of 

scientific respectability for rationalizing an essentially ad hoc process. 

 

Because of the importance of the problem, and the limitations of the traditional MV efficiency 

framework, several alternative approaches for defining investment policy have been proposed.  

Some of the most popular use Monte Carlo asset-liability financial planning methods with 

liability modeling.  As discussed in chapter 3, however, asset-liability financial planning 

methods also have limitations that are no less serious than those of MV optimization.  Is it 

possible to enhance the MV efficiency framework so that it is useful for defining investment 

policy? 

 

                                                 
1 In the controversy concerning Brinson et al. (1986) and the follow-on investigation of Hensel et al. (1991), there 

is nevertheless agreement that investment policy is a key investment decision. 



ECONOMIC LIABILILTY MODELS 

 

The author has found a MV efficiency framework enhanced with benchmark optimization 

techniques useful for defining investment policy in many cases (Michaud 1989c).  The 

procedure requires an investment policy relevant prior in the form of an economic model of fund 

liabilities or obligations (Michaud 1989b). 

 

The notion of an "economic" liability is a relatively novel one.  The term economic highlights 

the substantive differences that may exist between such models and actuarial approaches for 

defining liabilities, particularly with respect to defined benefit pension plans.  

 

The objective of economic liability modeling is to describe how fund values and obligations 

interact and change dynamically in time.  The economic liability model reflects changes in the 

fund's obligations as a function of changes in economic factors and asset returns.  The economic 

model may also be a function of the level of assets and liabilities, when they are not equal.  The 

success of the procedure depends critically on a valid model of liability risk.  Similar to the 

impact of introducing a benchmark-relative return prior, an economic liability 

benchmark-relative optimization may radically alter the investment character and improve the 

investment value of MV investment policy optimizations.  

 

The critical step is to define an appropriate model of period-by-period changes in the capital 

value of fund obligations as a baseline return for each asset.  After that, investment policy 

benchmark optimization is straightforward.  The economic liability returns form the basis of the 

benchmark-relative optimization parameter inputs and computation of the MV efficient frontier.   

 

AN EXAMPLE: ENDOWMENT FUND INVESTMENT POLICY 

 

Endowment fund investment policy studies often provide convenient examples of 

benchmark-relative economic liability optimization.  In many cases, simple economic liability 

models reflect changes in fund obligations and baseline returns for the fund. 

 

For example, an endowment fund’s investment objective may require maintaining purchasing 

power over time.  Meeting the inflation rate is a convenient interpretation of the fund's 

obligations.  In this case, the historical inflation rate is the benchmark-relative liability return in 

each period. 

 

A college endowment fund’s investment objectives may not be as simple as meeting the inflation 

rate, however.  One alternative is to define the fund’s obligations in terms of maintaining a 

college's competitiveness among similar schools in attracting students.  For example, the fund 

may serve as a vehicle for financing student aid.  Then an appropriate economic liability model 



of benchmark return may include historic changes in student costs, including tuition, fees, and 

board and room.2 

 

PENSION LIABILITIES AND BENCHMARK OPTIMIZATION 

 

Investment policy studies for corporate final average pay defined benefit pension plans are 

probably the case of most institutional interest.  While it may seem reasonably straightforward 

to define economic liability models for endowment funds, foundations, or even individuals, it 

may seem much less so for defined benefit pension plans.  For many fund trustees and 

consultants, pension plan liabilities are inextricably associated with actuarial estimation 

methods.  To the extent that economic liability benchmark optimization is a universal 

framework for defining investment policy, it must be applicable to defined benefit pension plans.   

 

The rest of this chapter explains how benchmark-relative optimization with economic liability 

modeling can be applied to defining investment policy for defined benefit pension plans.  In the 

process, I address the economic nature of pension plan liabilities, a topic of substantial interest to 

many institutional investors.  Some limitations of actuarial methods for defining investment 

policy are also covered. 

 

LIMITATIONS OF ACTUARIAL LIABILITY ESTIMATION 

 

Are actuarially estimated pension liabilities useful in defining investment policy?  It may 

surprise many outside the actuarial profession to know that pension liability estimation is not the 

primary focus of the defined benefit actuarial estimation process. 

 

The actuarial estimation process of pension plan obligations is a tool of corporate financial 

management.  The design objective of an actuarial valuation is to estimate required plan 

contributions for the orderly funding of current and emerging plan obligations.  In many cases, 

the corporate funding objective is to maintain pension costs as a fixed percent of payroll.  

Actuarial pension liabilities are constructs for estimating plan contributions.  Many actuarial 

assumptions are not economically realistic.  Actuarial pension liabilities can be made larger or 

smaller depending on corporate funding needs and objectives, including whether the corporation 

prefers to pay benefits now or later.  Misperceptions of liability risk, including the illusion of 

minimal period-by-period variability, are associated with the smoothing of variability endemic to 

the actuarial estimation process and the tradition of occasional in-depth actuarial valuations. 

 

For investment policy planning, actuarial methods may be useful primarily for approximating the 

current capital value of plan benefits and funding status.  Current funding status may be 

important for defining investment policy, particularly when plan underfunding is significant and 

plan termination is a serious consideration.  Actuarial methods have severed limitations for 

reflecting pension liability risk. 

                                                 
2 An investment policy study conducted by the author in summer 1996 for the Massachusetts College of Art 

Foundation in Boston included similar objectives. 



 

ECONOMIC PENSION LIABILITIES 

 

Economic pension liability models depend on an understanding of the economic nature of 

pension plan obligations.  The variability of pension liabilities depends primarily on economic 

factors that are generally outside the scope of actuarial methods.  A key to understanding the 

risks of pension liabilities is to recognized that there are two types of pension liabilities: current 

or accrued and future or expected.  For defining investment policy, pension liability risk 

dominates the investment policy decision.   

 

CURRENT PENSION LIABILITIES 

 

Plan termination obligations are a first-order consideration for many plan sponsors.  This is 

because plan termination is often a significant corporate consideration, particularly if the firm is 

in financial distress.  Under U.S. law, vested pension benefits are financial obligations of the 

plan and of the firm, whether or not the plan terminates.  The accrued benefit obligation (ABO) 

defines the capital value at market interest rates associated with plan termination benefits. 

 

Plan termination liabilities are associated with retirees and the vested benefits of current 

employees.  Assume a current employee with 10 years of vested service and 10 years to 

retirement.  If plan termination occurs, the plan has the financial obligation to pay the 

accumulated plan benefits associated with 10 years of service and current final average salary 10 

years from now.  The promised benefit in this case is similar to a long-term bond with a delayed 

first payment period.  The plan benefits for retirees have no delay in payment period.  The 

benefit payments of accrued or current plan obligations under plan termination are highly 

predictable cash flows derivable from mortality tables.  Such liabilities are primarily interest 

rate sensitive and financially similar to a portfolio of short- and long-term bonds.  

 

TOTAL AND VARIABLE PENSION LIABILITIES 

 

Suppose that the firm is ongoing and plan termination is not a significant consideration.  In this 

case, there are additional plan liabilities.  Consider the vested employee with 10 years of service 

and 10 additional years until retirement.  Suppose that the employee remains with the firm until 

retirement.  In this case the employee's 10 years of current service is associated with a pension 

benefit that depends on final average pay 10 years from now.  The capital value of a benefit that 

depends on final average pay 10 years from now is likely to be significantly greater than the plan 

benefit evaluated with current final average pay.  Consequently, the value of funds that are 

required to consider the plan fully funded for all the promised benefits, current and likely, may 

be much larger than that associated with plan termination.  Because the purpose of the pension 

fund is to assist the firm in providing orderly funding of plan benefits, proper planning includes 

estimation of expected or emerging benefits associated with the ongoing functioning of the plan.  

The capital value of the difference between termination and total liabilities may be significant, 

especially for senior officers of the firm. 



 

Define the estimated capital value at a given point in time of all current and expected plan 

benefits as the total benefit obligation (TBO) of the pension plan.   It is convenient to define the 

variable benefit obligation (VBO) of the pension plan as the difference between the TBO and 

ABO: 

 

   VBO = TBO - ABO. 

 

The VBO is the expected pension benefit component of total pension liability.  Estimates of 

required funding levels and considerations of the risk characteristics of pension obligations often 

ignore the VBO. 

 

ECONOMIC SIGNIFICANCE OF VARIABLE LIABILITIES  

 

Is the VBO a significant portion of the total pension obligation?  For companies in mature 

industries, the VBO may be a relatively minor portion of total plan obligations.  This is because 

most pension obligations may be associated with employees near or at retirement.  On the other 

hand, for fast-growing companies, the VBO may be the dominant portion of plan liabilities.  

One estimate is that the VBO is typically 70% of the ABO (Michaud 1989c). 

 

A plan sponsor has the option of terminating the pension plan.  Does this make VBO liabilities 

unimportant?  In plan termination, the VBO has zero capital value by definition, and the TBO 

equals the ABO.  Consequently, the view may be that only assets for funding ABO liabilities are 

required.  Such arguments ignore some fundamental economic truths.   

 

By definition, a pension plan is deferred wages.  The pension plan is part of the total wage and 

fringe benefit package associated with employment at the firm.  Terminating the pension plan 

implies a reduction in total compensation paid by the firm to its employees.  A firm that 

terminates the plan and wants to remain in business will have to be competitive for human 

capital.  In general, this means that the firm has to pay the equivalent capital value of the 

terminated benefits, probably in the form of current wages.  Consequently, there may be no 

economic benefit to the firm purely from plan termination.  The firm may also have to deal with 

poor employee morale if perceptions of diminished total compensation are prevalent. 

 

A significant economic disadvantage attaches to plan termination for the ongoing firm: 

Contributions to qualified pension plans, up to a specified limit, are tax advantaged by U.S. law.  

By terminating the plan, the firm may give up a considerable economic benefit that may cost 

much more than its equivalent capital value in total compensation to employees. 

 

Plan termination makes economic sense primarily in the context of substantial financial distress 

and significant concern for the firm’s viability.  In this case, the economic value of terminating 

the plan may be worth the likely near-term decrease in competitiveness for human capital or 

longer-term increase in total compensation required.  For a competitive ongoing firm, the VBO 

is very much an economic reality, whether or not the plan terminates.  In many cases, proper 

investment policy planning requires consideration of both components of total plan liabilities.  



Contrary to popular perceptions, in the light of tax implications, a defined benefit pension plan is 

not a corporate liability but a U.S. government-sponsored asset for promoting corporate 

competitiveness.   

 

ECONOMIC CHARACTERISTICS OF VBO LIABILITIES 

 

The economic risk characteristics of VBO liabilities are generally very different from the ABO.  

ABO liabilities have fixed-income risk characteristics that are highly sensitive to interest rates.  

In contrast, VBO liabilities may often have equity risk characteristics and may not be 

particularly interest rate sensitive (Michaud 1989b).  These fundamental differences have 

important implications for defining an appropriate defined benefit pension plan investment 

policy. 

 

VBO risk is associated with the business risks of the firm and its ability to grow and compete for 

markets and human capital over time.  Unexpected changes in VBO liabilities and the firm’s 

payroll are closely associated.  Unexpected economic factors that postively affect firm growth 

are likely to lead to a lower withdrawal rate, larger-than-anticipated salary increases and 

unanticipated increases in the workforce, leading to an unexpected increase in firm payroll and 

VBO liability.  Conversely, unexpected economic factors that  adversely affect firm growth are 

likely to have the opposite impact on withdrawal rates and salary and workforce growth, leading 

to an unexpected decrease in payroll and VBO liability.  Consequently, VBO risk is closely 

linked to regional, national and global economic risk factors.  In some cases, VBO risk may be 

highly correlated with domestic and global equity market returns and largely unrelated to interest 

rate risk.3 

 

The implications of modeling pension liability risk with economic risk factors can have a 

dramatic impact on defining investment policy.  For example, a VBO with equity risk 

characteristics may imply that a well-diversified equity portfolio is the low-risk asset allocation 

of choice, a significant inversion of conventional perceptions.4  Local and global economic risk 

factors that affect variable liabilities are often very different from those that affect fixed cash 

flow securities. 

 

AN EXAMPLE: ECONOMIC LIABILITY PENSION INVESTMENT POLICY  

 

Defining investment policy for a defined benefit pension plan typically involves extensive 

investigation into the nature of the firm’s business risks, the level of current plan liabilities, and 

the thoughtful use of historic asset returns and economic data.  The following discussion 

provides a very simple example of the benchmark-relative economic liability optimization 

framework for defining pension plan investment policy.   

                                                 
3 Michaud (1989b) provides an example. 
4 Note that this conclusion is impossible with actuarial liability methods, where the rationalization for equities rests 

on presumed long-term return benefits as opposed to period-by-period risk characteristics.  The example provides 

further illustration of critical limitations of actuarial methods for defining investment policy.  



 

Suppose that the total pension plan liability consists of 60% ABO and 40% VBO and that the 

plan is fully funded.5  Also, assume that U.S. bond returns model the ABO, and U.S. equity 

returns model the VBO.  Finally, suppose that the historic period and asset return data in Tables 

2.3 and 2.4 reflect an appropriate scenario for examining investment policy. 

 

Exhibits 10.1 and 10.2 show the benchmark-relative optimization efficient frontier that results 

from the simple economic liability model of pension liabilities and historic asset return data.6  

Exhibit 10.1 provides the efficient frontier and statistical equivalence region comparable to 

Exhibit 4.1.  Exhibit 10.2 provides the resampled efficient frontier and 90% sample acceptance 

region comparable to Exhibit 6.1.  

 

Comparing Exhibits 10.1 and 10.2 to Exhibits 4.1 and 6.1, U.S. stocks are closer and U.S. bonds 

are further from the liability-relative efficient frontier.  Note that the current portfolio is barely 

within the liability-relative 90% acceptance region while the equal-weighted portfolio is not. 

 

A comparison of the end points of the resampled versus MV efficient frontier portfolios is 

similar to that in the index-relative case in chapter 9.  The minimum variance point is the 

benchmark-return or economic liability model in both cases.  The maximum average return 

portfolios ignore the benchmark, and the maximum average return MV and resampled efficient 

portfolios are the same as in Table 6.3.  In general, an economic liability model need not consist 

solely of asset classes and an asset allocation with zero liability-relative variance may not exist. 

 

                                                 
5 Full funding here means that the capital value of the fund equals the TBO.  See Michaud (1989c) for benchmark 

optimization under more general funding assumptions.   
6 The pension liability model has primarily illustrative value as a paradigm of the basic modeling process and is 

unlikely to apply to any real firm. 



 
Further study of the intermediate points on the resampled and MV efficient liability-relative 

frontiers is of interest. Table 10.1 provides a statistical analysis of the middle liability-relative 

efficient frontier portfolio similar to Table 6.2.  Table 10.2 provides the associated simultaneous 

90% confidence intervals, similar to Table 7.3.  For convenience of analysis, Table 10.1 also 

provides the liability weights in column 8 and the liability-relative active weights of the 

resampled efficient frontier portfolio in column 9.  

  

Comparing Tables 10.1 to 6.2 shows the impact of including the economic liability benchmark in 

the optimization.  Table 10.1 shows that U.S. equities are now a statistically significant asset 

allocation at the 5% significance level.  Note that Euros play a less prominent but still important 

role in funding the liability.  As in previous cases, the resampled efficient portfolio has nearly 

uniformly less extreme portfolio weights than the MV efficient portfolio in column 5 in Table 

10.1.  While the benchmark process reduces ambiguity relative to classic MV efficiency, the 

simplicity of the liability model leads to less striking results than in the index-relative case in 

Chapter 9.  

 

 

 



 
Table 10.1  Statistical Analysis, middle Liability-Relative Efficient Portfolio 

Asset Resampled 

Efficient 

Portfolio 

5th 

Percentile 

95th 

Percentile 

Standard Error T-statistic MV Efficient 

Portfolio 

Liability 

Portfolio 

Active 

Resample

d 

Portfolio 

Canada  .01 0 .02 .03 0.21 0 0 .01 

France              .06 0 .28 .09 0.65 .04 0 .07 

Germany .02 0 .16 .07 0.42 0 0 .03 

Japan   .10 0 .34 .11 0.85 .09 0 .09 

U. K. .07 0 .28 .1 0.66 .02 0 .06 

U. S. .52 .12 .68 .17 3.0 .63 .4 .12 

U. S. Bond .13 0 .33 .13 1.01 .21 .6 -.52 

Euro Bond .09 0 .38 .14 0.64 0 0 .09 

Note:   MV efficient portfolio mean = 2.4%; standard deviation = 5.2%. 

 Resampled efficient portfolio mean = 2.4%; standard deviation = 5.5% 

 



Table 10.2  90% Simultaneous Confidence Intervals, Middle Liability-relative Efficient Portfolio 

 Lower Bound Resampled Efficient Portfolio  Upper Bound 

Canada  0 .01 .42 

France  0 .07 .36 

Germany 0 .03 .36 

Japan   0 .09 .36 

U. K. 0 .06 .42 

U. S. 0 .52 .96 

U.S. Bond 0 .13 .60 

Euro Bond .04 .09 .70 

Note: Accurate to within +/- 0.06 range. 

CONCLUSION 

 

Economic liability-relative optimization, performed appropriately, is often a significant tool for 

enhancing the value of MV investment policy studies.  In spite of its simplicity, the example 

indicates that a benchmark-relative economic liability framework may substantially alter the 

character of the MV optimization as well as its statistical characteristics.  

 

As a practical matter, economic liability risk modeling may not be a simple process.  Most 

critically, particularly in the case of defined benefit pension plans, it may require abandoning 

basic misconceptions of funding and plan liability risk.  The key to the success of the procedure 

is to define a relevant and appropriate economic liability model of fund liabilities.  On the 

positive side, unlike actuarial approaches, fund trustees and corporate officers often find an 

economic liability approach to investment policy planning an attractive and institutionally 

meaningful process.    

 

Many applications of economic liability modeling remain to be developed.  Only a few 

examples of economic liability studies exist.7  Many issues are open, and extensive research is 

required to solve specific applications.   

  

                                                 
7 An early example is the benchmark-relative economic liability investment policy study conducted by the author 

for the Ameritech Corporation, summer 1992. 
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CHAPTER 11 RETURN FORECASTS AND MIXED ESTIMATION 

 

Return forecasts are a natural part of most applications of portfolio optimization in asset 

management.  In active equity management, portfolio optimization and risk management 

services generally assume that the manager has forecasts of expected active returns available as 

inputs.  For active asset allocation, the manager typically has views on asset returns that modify 

or replace historic return estimates.  For investment policy studies, asset return views usually 

modify or replace long-term return estimates so that optimization inputs are consistent with 

current expectations of long-term economic trends and changes in markets.  Clearly, return 

forecasts are a central part of mean-variance (MV) optimization in practice. 

 

This chapter addresses the issue of rigorously integrating exogenous forecasts of return with 

historic data for asset management.  Rigorous methods may significantly improve the return 

forecasts and the investment value of MV portfolio optimization.  

 

ASSET ALLOCATION AND AD HOC INPUTS  

 

In many asset allocation studies, the optimization inputs are a combination of exogenous 

forecasts of return and the sample covariance matrix of historic returns.  For example, return 

forecasts may replace the sample means in Table 2.3.  The new optimization inputs may consist 

of the revised Table 2.3 data and the original data in Table 2.4.   

 

Unfortunately, the ad hoc procedure of replacing sample means with return forecasts has no 

theoretical justification.  It is also one of the most significant sources of MV optimization 

instability and asset allocation irrelevance.  In many cases, the returns are not consistent with 

historic asset variability and interrelationships represented by the sample covariance.  In 

addition, the procedure ignores any uncertainty or level of reliability of the forecast.  For an 

optimization to be stable, the inputs have to have internal consistency. 

 

MIXED ESTIMATION FORECASTS 

 

Ad hoc procedures for including forecast returns in an asset allocation are hard to justify. 

Rigorous statistical methods for using exogenous forecasts of return with historic data have been 

available for a number of years.  Theil and Goldberger (1961) worked out a linear regression 

procedure for rigorously mixing forecast returns and uncertainty with historic data.1  Black and 

Litterman (1992) provide a similar formula for MV asset allocation.    

 

Theil-Goldberger mixed estimation assumes that the return forecasts and historic return 

estimates are independent.  The independence requirement in mixed estimation puts into focus 

the necessary exogenous character of return forecasts.  In many practical cases, managers may 

find it difficult to develop return forecasts that are completely independent of the historic return 

optimization inputs.  However, the benefits of the procedure increase to the extent that the 

                                                           
1 See Theil (1971) for an authoritative and comprehensive discussion. 
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return forecasts satisfy the independence assumption.  An organization’s ability to produce 

return forecasts that satisfy mixed estimation assumptions are likely to improve with experience. 

 

MIXED ESTIMATION ASSET ALLOCATION INPUTS 

 

In a mixed estimation asset allocation, historic return inputs (sample means and covariances) are 

mixed with the return forecasts, assumed standard errors of the return forecasts, and relative 

reliability estimates to produce the mixed estimate returns.  The mixed estimate returns and 

sample covariance are the new inputs into the MV asset allocation.  The procedure is very 

general and is applicable, with some modifications, to most asset allocation frameworks of 

practical interest.     

 

MIXED ESTIMATION INDEX-RELATIVE ACTIVE ASSET ALLOCATION  

 

As an illustration of mixed estimation MV asset allocation, consider the index-relative 

framework described in Chapter 9.  The data in Table 11.1 illustrate the key inputs and results 

of the mixed estimation procedure.  The first line presents the analysts’ exogenous forecasts of 

monthly index-relative active return (alpha): 0.2% for U.S. equities, 0.1% for France, and -0.2% 

for Japan and Germany, no information for other markets.  The second line presents the historic 

index-relative average returns from Table 9.1. The third line in Table 11.1 displays the 

Theil-Goldberger-Black-Litterman mixed estimate returns.  The analysis assumes that the 

alphas and historic return estimates are equally reliable and that the standard errors of the 

forecasts are the same as the historic estimates.  The mixed return estimates show how the 

forecasts and historic data mix optimally under the assumptions.2  

 
Table 11.1 Mixed Estimation with Index-Relative Returns, Alphas and Historic Monthly Means 
(Percentages) 

 Canada France Germany Japan U. K. U.S. U.S. Bond Euros 

Alpha 0.00 0.10 -0.20 -0.20 0.00 0.20 0.00 0.00 

Index-Relative Means  -0.36 0.13 -0.22 0.13 0.04 -0.04 -0.51 -0.48 

Mixed estimate -0.32 0.16 -0.32 -0.01 0.05 0.06 -0.50 -0.48 

 

Exhibit 11.1 shows the impact of the mixed estimates on the original asset returns and efficient 

frontier. The top curve from the right is the mixed estimate efficient frontier.  The results show 

that the right arm of the mixed estimate frontier has rotated upwards to reflect a higher return 

forecast in France.  Note also that the mixed estimate index is not required to have an 

index-weighted sum on the original MV efficient frontier.  The mixed estimates may indicate 

mispricing and index market timing information.   

 

                                                           
2 To avoid singularity, the return premium covariance matrix from Tables 2.3 and 2.4 is the  matrix  in (8) in the 

appendix of Black and Litterman (1992).  The historic average returns and diagonal variances in  and  are from 

Table 9.1. 
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The results in Table 11.1 are a simple illustration of the mixed estimation technique.  The 

hallmark of the procedure is its flexibility.3  In particular, the levels of reliability associated with 

the forecasts provide a great deal of control of the results, from reflecting largely the historic 

return estimates to largely the return forecasts.  The analyst soon comes to appreciate the 

interaction of reliability level and historic relationships for designing the optimization inputs and 

obtaining maximum benefit from the forecasts consistent with beliefs.  

   

BENEFITS 

 

The reader may find the asset allocation mixed estimation results in Table 11.1 fairly obvious 

and largely anticipatable.  However, such a procedure is often a world away from the ad hoc 

return procedures and MV asset allocations prevalent in the investment community.  The results 

in Exhibit 11.1 do not differ drastically from the original efficient frontier in spite of the 

forecasts.  This is often not the case with ad hoc returns in practice.  Many procedures for 

developing return forecasts do not consider historic data in a mixed estimation framework and 

often lead to dramatically different and unstable optimized portfolios.  Mixed estimation is 

                                                           
3 The level of certainty may also be set to more than a single period of historic data.  See the discussion in Michaud 

(1998) on the Theil procedure. 
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likely to have a first-order impact on the stability and investment benefit of MV optimization 

asset allocation.   

 

A cautionary note: Although the mixed estimation process is very flexible, it is also prone to user 

error.  Successful implementation often requires experience and patience with the procedure as 

well as significant attention to detail.   

 

EQUITY RETURN FORECASTS AND MIXED ESTIMATION 

 

Theil-Goldberger mixed estimation may be very useful in enhancing return forecasts used in 

equity portfolio optimization.4  Many equity return forecasts are based on historic factor-return 

linear regressions.  Managers often have exogenous information that is largely independent of 

historic data that may be useful in forecasting stock return.  Examples of exogenous information 

may include changes in monetary and fiscal policy, market structure, and political events not 

well reflected in historic data.  Theil-Goldberger mixed estimation provides a convenient and 

rigorous framework for the integration of exogenous information into linear regression forecasts 

of stock return.   

 

Few active equity managers use Theil-Goldberger methods for forecasting active returns. 

However, such methods are often a natural extension of many institutional stock valuation 

frameworks and internal procedures.  For many equity managers, this largely unexplored 

technology has the potential of adding much value to asset management.  Forecast returns that 

are consistent with asset variability and factor interrelationships are more likely to lead to 

optimized portfolios with investment value.  

 

 

                                                           
4 There are many issues on appropriate methods for developing return forecasts.  These issues involve a very wide 

range of active management techniques and are beyond the scope of this text.  Michaud (1998) provides a recent 

review of a number of return forecasting issues for institutional global equity portfolio management and an example 

of the use of Theil-Goldberger mixed estimation in forecasting returns. 
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CHAPTER 12 AVOIDING OPTIMIZATION ERRORS 
 

Optimizers are useful for assigning airport gates, routing telephone calls as well as optimizing 

portfolios.  Therefore, it should not be surprising that an optimizer requires a great deal of 

information specific to the investment process if it is going to find investment-relevant 

portfolios.  The operating principle for defining an optimization is that more information is 

better than less as long as it is reliable.  

 

Several procedures, developed largely from institutional experience, are useful for enhancing the 

investment value of an optimization.  Most apply to equity portfolio optimization. 

 

SCALING INPUTS 

 

Improperly scaled inputs are perhaps the single most serious source of errors made in 

formulating an optimization.  In an equity portfolio optimization, there are three basic classes of 

security inputs: expected returns, trading costs, and risk estimates.  In the many cases when the 

input units are not comparable, optimization results are unlikely to have investment value.    

 

Institutional forecasts of stock returns are generally relative valuations or rankings of stock 

values.1  Relative valuations need scaling in order to be useful as inputs to most optimizers.  

The appropriate scaling transforms the return forecast into the "return on average associated with 

the forecast."  Proper scaling of return forecasts allows comparability with trading costs, risk 

estimates, and other inputs in the optimization.2    

 

The scaling formula is the product of two quantities:  

1. the assumed level of information or correlation between the forecast and ex post return, 

2. the expected volatility or standard deviation of ex post returns.   

 

The first quantity is the information correlation or coefficient (IC) of the forecast.  The IC and 

expected volatility may vary by market, sector, industry, and analyst.  

 

The scaling formula for forecast returns has an important subtlety that has often led to error.  In 

many cases, the two components of the scaling formula are inversely related.  For example, the 

IC of a forecast for utility stocks may be higher than for growth stocks, but the level of ex ante 

volatility may be less.  Consequently, the product or scale factor for utility stock forecasts may 

not differ significantly from that for growth stocks.   

 

                                                           
1 Forecasts of expected returns might be relative valuations even when they resemble actual returns.  For example, 

Michaud and Davis (1982) show that dividend discount model returns may only have ordinal or stock ranking 

information.     
2 Ambachtsheer (1977) pioneered the development of the scaling formula for forecast returns.  Michaud (1989a: 

appendix, 40-41) generalized the scaling process and developed some of its properties using a linear regression 

framework.  In some cases, a more general regression framework may be appropriate. 
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Although stock return forecasts are often given in monthly return units, some commercial risk 

estimate services are provided in weekly units.  Inconsistent risk and return units may have a 

negative impact on the optimization.  In some commercial optimizers, the optimized portfolio 

depends on the values of the parameters of a quadratic “utility” or “risk aversion” function.3  In 

this case, the units of the returns and risk estimates affect the solution.  However, many 

portfolio optimizers now include an option that allows the user to ignore risk model units.4 

 

The manager must also properly scale expected returns relative to trading cost estimates.5  

Trading costs generally vary by market, holding period, investment style, and asset class. For 

example, a value strategy may have a much lower portfolio turnover rate than a growth stock 

strategy.  In this case, the average turnover rate may affect the relative scaling of return 

forecasts to trading costs.  

 

Although the effort may be significant, proper scaling of all optimization inputs is essential.  

Poorly scaled optimizations usually generate investment-irrelevant optimized portfolios.   

 

FINANCIAL REALITY 

 

It seems obvious to insist that optimization inputs are consistent with financial reality.  Yet, in 

many cases, optimization inputs do not make investment sense.   

 

A surprisingly common error concerns active return forecasts.  By definition, the 

index-weighted sum of active returns must equal zero.  In investment terms, an index can never 

beat itself.  Yet, institutional active returns often do not satisfy this necessary condition.  

Consequently, the optimization may have little investment value.  Note that the index-weighted 

sum constraint is often useful for conditioning historic regressions for forecasting returns.  

 

LIQUIDITY FACTORS 

 

For a large trust department or mutual fund portfolio, or for a small-capitalization stock 

portfolio, the capital value of the fund may be significant in terms of the percentage of a 

                                                           
3 An optimizer may define a single optimal portfolio on the efficient frontier based on preset values of quadratic 

“utility function” parameters that define the relative importance of portfolio risk and expected return.  One problem 

is that the choice of default values of the utility parameters may not be appropriate for a given investor.  Another 

problem is that the parameters may have little intuitive investment meaning.  In addition, the default values may 

obscure limitations of the optimizer or risk model.  For example, default parameters may be set to choose efficient 

portfolios near the top of the efficient frontier.  The optimizer, in this case, may do little more than find large 

expected return portfolios.  Often, a more meaningful objective is to define an optimal portfolio in terms of the 

desired level of risk.  For optimizers defined by utility function parameters, the manager can compute efficient 

portfolios with desired risk levels by varying parameter values.    
4 By allowing the specification of portfolio residual risk directly, a properly formulated stock portfolio optimizer 

operates independently of the scaling of the risk estimates relative to the return inputs and trading costs.   
5 The three components of total trading costs are fees (including taxes), market impact, and opportunity. The careful 

estimation of all three components of trading costs is a critical element in the likely investment success of a 

portfolio optimization.   
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security's outstanding market value.  For example, a 1% percent change in a holding may 

represent a large amount of capital relative to the size of the firm.  Such considerations are 

related to trading cost, where the trading cost function depends on portfolio size and is 

non-linear.  This is an example of the inherent position-dependent character of portfolio 

optimization.   

 

A related issue is liquidity and capitalization in asset allocation.  Country equity and fixed 

income markets may differ significantly in size and liquidity.  A mean-variance (MV) asset 

allocation that does not consider relative liquidity and size may lead to irrelevant portfolios.   

Some methods for considering such factors include nonlinear trading cost constraints and 

benchmark optimization. 

 

CONSTRAINTS 

 

Institutional portfolio optimizations often include many kinds of constraints.  Sector and 

industry membership constraints are a simple way to control portfolio risk.  Constraints may 

reflect investment strategy or market outlook information that is exogenous to return forecasts.  

Constraints may be useful for imposing quality controls on the portfolio management process.  

Constraints are also useful for controlling portfolio structure and avoiding inadvertent risk 

exposures.  When no information is available, it is often appropriate to keep factor and group 

exposures close to index weights.  The downside of portfolio constraints is that they can lead to 

significant opportunity costs on investment performance if not properly used.  Overconstrained 

portfolios may be substantially riskier than they appear.6 

 

The large number of constraints in many institutional portfolio optimizations have evolved from 

valuable, hard-earned investment experience.  Investment practice may often reflect the 

historical need to overcome the many limitations of current MV portfolio optimizers and risk 

models.  However, an informed statistical view of portfolio optimization may reduce the need 

for many constraints and the opportunity costs and risks associated with overconstrained 

portfolios.    

 

BIASED PORTFOLIO CHARACTERISTICS 

 

As a general principle, any optimized portfolio characteristic is biased because estimation error 

accumulates in the optimization objective function.  One important example is that the risk of an 

optimized portfolio is a downward-biased estimate of its true value.  This means that the 

out-of-sample risk of an optimized portfolio is likely to be larger than that estimated by the risk 

model and the optimization.  One method of evaluating the unbiased risk of an optimized 

portfolio is to subscribe to two competent risk measurement services.  The recommended 

procedure is to optimize the portfolio with one risk model and evaluate portfolio risk with the 

                                                           
6 An overly risk-constrained or factor-constrained portfolio may have much more out of-sample risk than a less 

constrained portfolio. 
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other.  Although it is not foolproof, the two-risk measurement method can help to realistically 

estimate out-of-sample portfolio risk. 

 

The same bias is present for any other optimized portfolio characteristic.  For example, a 

manager may want to maximize dividend yield or minimize portfolio beta.  A maximized 

dividend yield or minimized beta portfolio is likely to have a much smaller dividend yield or 

larger beta out-of-sample than that estimated in the optimization.   

 

Optimizing more than one variable may create additional biases.  For example, beta and 

dividend yield have a negative correlation.  Optimizing correlated variables in the same 

optimization can create synergistic biases and unpredictable portfolio behavior.  

 

In general, the more demands placed on the optimization, the more likely the out-of-sample 

performance of the optimized portfolio will disappoint.  Such effects are endemic to all 

optimization processes.  To be effective, a user should be aware of an optimizer's inherent 

limitations in using statistically estimated data and conservative in demands made of the 

optimization process.  

 

INDEX FUNDS AND OPTIMIZERS 

 

The purpose of an index fund is to track an index.  One method for constructing index funds is 

to use MV optimization.  The objective is to minimize the residual or tracking error.  Because 

there are no return estimates, an index fund optimization is significantly more stable than a more 

typical MV optimization.  For this reason, optimization may appear as the tool of choice for 

constructing index-tracking portfolios.  However, because of competitive pressures, manager 

tolerance for tracking error is generally much smaller than for active portfolios.  Even small 

errors in tracking error estimation can have (and have had) significant negative business 

consequences.   

 

There are two alternative ways to construct index funds in practice: replication and stratified 

sampling.  Index replication is constructing an index-weighted portfolio consisting of all the 

securities in the index.7  Stratification is a statistical sampling procedure for constructing a 

representative sample portfolio of securities in the index, usually based on index-weighted 

representative tiers of sectors of securities in the index.  The three procedures differ in 

comprehensiveness of representation of the index:  Replication is most comprehensive, whereas 

optimization is usually the least.  

 

Various considerations determine which procedure to choose in a given situation.  Minimum 

tracking error and rebalancing issues may make replication the method of choice for long-term 

investors.  In some cases, where the liquidity or holding costs of stocks in an index is a major 

consideration, optimization or stratified sampling may be more appropriate alternatives.  In 

some emerging markets, where a reliable risk model may not be available, stratification may be 

the procedure of choice.  

                                                           
7 In practice, the portfolio may exclude many small stocks. 
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OPTIMIZATION FROM CASH 

 

The appropriate procedure for optimizing an equity portfolio may depend on whether the 

optimization starts from cash or from a fully invested equity portfolio (Erlich 1997).  To frame 

the issue, note that any equity portfolio is decomposable into two portfolios: an index fund and a 

pure active or arbitrage portfolio.8  If we suppose an indefinite holding period for the invested 

assets, rebalancing may occur many times over the life of the fund.  

 

An active manager optimizes the portfolio according to the active return forecasts.  

Conceptually, the index is the appropriate starting portfolio.  When optimizing from cash, 

however, the objective of optimally investing in the active or arbitrage portfolio conflicts with 

the need to convert cash into the index.  The active return forecasts are relevant for a single, 

often relatively short-term, forecast period.  Each rebalancing period has different active return 

forecasts.  In contrast, the index component of the fund is relatively stable.  Eventually, the cost 

of converting cash into the stock index is paid.  The optimizer has to compromise between the 

dual objectives of finding an optimal arbitrage portfolio and investing in the stock index 

portfolio.  Rebalancing periods when the purchase of the index fund is incomplete exposes the 

optimized portfolio to unnecessary and irrelevant risk and trading costs. 

 

A preferable procedure is to invest cash in two optimization steps.  First, find an optimal 

portfolio from cash, omitting active return forecasts, that considers the investor’s objectives and 

constraints, including residual risk target, desired number of securities, and trading cost 

estimates.  This step defines a neutral or index-like portfolio that reflects the normal constraints 

and objectives that are part of the relatively stable structure of the fund.  The second step starts 

with the neutral portfolio to define an optimal active portfolio as a function of the active return 

forecasts.  The arbitrage component of the active portfolio in the second step optimization 

reflects tradeoffs between return forecasts, risk, and trading costs independent of the need to 

convert cash into equities.  Because the cost of buying the neutral portfolio has to be paid, there 

is no overall increase in trading cost over the normal life of the fund.  

 

The Erlich two-step optimization procedure balances the long-term objective of buying the 

neutral portfolio with the shorter-term objective of implementing the active return forecasts.  

The procedure is likely to result in better performance, less risk, more stability during early 

rebalancings, and a reduction in overall trading costs.  

 

Cash optimization may also be useful when adding cash to an equity portfolio.  More generally, 

two-step optimization may be useful when there is a change in the benchmark portfolio or other 

long-term characteristics of the fund.  The importance of two-step optimization may increase as 

the size of the stock universe and level of active portfolio risk increases.  For low-risk and 

single-country equity portfolios, the benefits may not be significant. 

 

                                                           
8 The weights of the arbitrage portfolio sum to zero while the index fund weights sum to one.  See Michaud (1993) 

for further discussion. 
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FORECAST RETURN LIMITATIONS 

 

Useful optimized portfolios require careful control of portfolio structure.  This is because 

forecast returns may have implicit structural biases that are not part of the information in the 

stock valuation process. 

 

Generally, active equity optimization returns are adjusted for systematic risk.  However,  there 

are many open theoretical and practical issues with estimating the return associated with 

systematic risk.  For example, Kandel and Stambaugh (1995) note some important limitations of 

widely used econometric estimation methods.  From another perspective, Berk’s (1995) 

theoretical analysis suggests that many systematic risk frameworks may not correctly reflect the 

risk of small stocks.  In addition, the proper theoretical framework for estimating systematic risk 

remains controversial in some cases.9   

 

Another source of biases may come from the structure of the returns.  Suppose that the stock 

forecasts are market sector neutral.10  For example, a forecast may be based on a factor-return 

regression that includes sector dummy variables to adjust for sector returns.  Nevertheless, the 

unconstrained optimized portfolio may exhibit large overweights and underweights in various 

market sectors.  If there is no sector information in the return forecast, why are there sector 

underweights and overweights? 

 

Variables used to forecast return, such as the book-to-price ratio, are likely to have larger than 

average values in some sectors than in others.  A larger than average value of the forecast 

factors in a sector is likely to lead to a larger than average value of forecast return in the sector.  

Consequently, all other things the same, the unconstrained optimized portfolio is overweighted 

in some sectors and underweighted in others.  However, by definition of a sector neutral 

forecast, there is no sector weighting information in the return.11  In this case, the structure of 

returns leads to inadvertent portfolio biases that are not consistent with the sources of 

information in the forecast.  One simple way to eliminate inadvertent biases in optimized 

portfolios is to impose index weight constraints on factor exposures that do not reflect forecast 

return information.  

 

Biases in forecast returns may be pervasive and are often very subtle.  Analysts and investment 

managers need to be diligent in detecting and eliminating such biases.  Portfolio optimization is 

likely to fail to provide useful investment portfolios unless the process is well formulated and 

consistent with risk estimation and the relevant sources of information in the forecasts.   

 

 

CONCLUSION 

 

                                                           
9 E.g., Shanken (1992, 1995) provides critiques of the arbitrage pricing theory framework that is the basis of many 

commercial models of equity risk measurement.   
10 Michaud (1998) provides an example.   
11 It should be noted that other formulations of forecast return may have sector-weighting information.  The point 

of the example is to show that inadvertent portfolio bets may appear in an unconstrained optimized portfolio. 
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Avoiding implementation errors is important for capturing and enhancing the investment value 

of optimizers.  Thoughtful consideration of investment theory and intuition, investor objectives, 

forecast return biases, and optimizer behavior leads to specialized techniques that may have a 

significant positive impact on portfolio structure and optimized portfolio performance.   
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