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SUMMARY

Risk and Compound Return

Richard 0. Michaud

The geometric mean or compound return is (generally) the
appropriate measure of multi-period return. Given intertemporally
independent and identically distributed returns over time, then
-we will show that: a) compound return is asymptotically normal,

N-period terminal wealth is asymptotically lognormal; b) median
N-period terminal wealth is asymptotically a direct function of
expected compound return; c) expected compound return decreases
as a function of the number of periods,

A statistically tractable approximation of the geometric
mean for finite N was used, together with the Ross (1973) model for
single-period returns, which showed that: a) expected compound
return is approximately a quadratic function of beta; b) a

critical beta (generally) exists beyond which expected compound
return decreases.

By assuming that the distribution of compound return can
be approximated by a normal distribution for finite N, risk policies
were found which maximize: a) the probability that a given compound
return rate or level of N-period terminal wealth will be achieved
over the N-period investment horizon; b) the compound return rate
or level of N-period terminal wealth that can be achieved in an

-period investment horizon for a specified probability level.

The objective of the analysis has been to clarify the long
term risk-return relationship for rational portfolio decision making
and to develop new tools for analysing the consequences of a long
term investment policy. A risk-averse expected utility maximizer
of N-period terminal wealth is thus supplied with a clearer basis
on.which to determine an appropriate investment policy.

Seminar on the Analysis of Security Prices
May, 13-1%, 1976



1. Introduction.

One of the most fundamental concepts in the theory of finance
is the assumption that expected return increases with increasing
risk, when risk is appropriately defined. Justification for this
view can be found in capital asset pricing theory (Sharpe, 1964;
Lintner, 1965; Fama, 1968, 1973). For a single-period expected
utility of terminal wealth maximizer who chobses among alternative
. portfolios on the basis of the mean and variance of return, given
capital market equilibrium and other assumptionsl, it can be shown
that‘the expected one period return from a security or portfolio is

a linear function of its systematic or market risk, B, and is given

by -

=
1

E(R) =Ry + 8 (EOD -R) (D)

where

B COV(R,M)/o;[. (2)

The symbols in (1) and (2) are defined as follows: R is the
total return on the capital asset or portfolio for the period; M
is the return on the market portfolio (value weighted) of all assets
taken together; R, is the return on a riskless asset for the period;
COV(R,M) is the covariance between the asset or portfolio and the

2
market portfolio; Om is the variance of return of the market portfolio.

Equation (1) is often called the "security market line."

Using (2), and by definition of the correlation, p, the standard
deviation of returns can be written as:

op = Boy/p. (3)

1For a detailed summary, including assumptions, see Sharpe (1970).
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Equations (1) and (3) completely specify the equilibrium return-
risk relationships for an asset or portfolio of assets for a single

investment period under the assumptions of the capital market model.

Fama (1970) provides an analysis of the multi-period
consumption-investment problem and a .justification for the
single-period expected utility of terminal wealth model
leading to (1) and (3). However, one of the assumptions of the
capital asset pricing model——single-period'capital market equilibrium-
is problematic in a multi-period context. It implies either that
intertemporal returns are not identically distributed or that
the equilibrium market is equally weighted (Rosenberg and Ohlson,
1973). Further, we will show that, if single-period returns are
generated according to (1) and (3), and if a multi-period risk
averse investor uses the mean and variance of the geometric mean
as a criterion for portfolio selection (which we will attempt to
justify), then there is (for many cases of interest) a maximum
level of beta beyond which expected geometric mean return decreases
while the variance increases. This result implies decreased demand

for assets or portfolios with betas greater than the expected

geometric mean maximum value.

‘Ross' (1973) one-factor arbitrage model is an alternative
single-period model which leads to the refurn-risk relationships
(1) and (3) without the equilibrium market assumption., It is also
consistent with the Fama (1970) analysis. In Ross' model, return
for every security in the period is assumed to be generated by a

simple linear relationship which is a function of a random



variable with zero expectation common to all securities and a
zero mean noise random variable. The rate of return R, is
interpreted, under the no arbitrage condition, as the rate of
return common to riskless assets. M refers to the rate of return
of the market portfolio in the period under the assumption that
the market portfolio is "well diversified" with respect to the
posited linear return generation process. Under these assumptions,
equations (1), (2) and (3) can be used to describe the one-period

expected total return, systematic level of risk, and standard

deviation of return, respectively, for any security or portfolio.
We will assume the Fama (1970) conditions: multi-pefiod
investors are risk averse maximizers of expected utility of con-
sumption and terminal wealth where future consumption and invest-
ment opportunities are state independent. These assumptions lead .
to the result that the behavior of multi-period investors in each
period is indistinguishable from a single-period maximizer of
expected utility of terminal wealth. Given the single-period

investment policy portfolio decisions, B and p, our objective

will be to examine the intertemporal'consequences of returns generated

according to the single-period return-risk relationships (1) and (3)

for rebalanced portfolios. This will be accomplished by using

the mean and variance of the geometric mean or compound return

as a measure of multi-period portfolio performance.

The multi-period portfolio compound return model which will

be derived is related to the capital growth or geometric mean

models of Latane (1959), Markowitz (1959, Ch. 6) , Hakansson (1971),



-4-

and Wippern (1971). Merton and Samuelson (1974) and Fama and

MacBeth (1974) provide a general review of this body of work.

Our model differs in two significant respects from previous
work: 1) The geometric mean return formula (13), which is the
basis of the mean-variance compound return portfolio selection

model, is an approximation of N-period compound return for finite

N, and is based on the mean and variance of single-period returns
so that consistency with the single-period mean-variance maximization
of expected utility of terminal wealth assumption is maintained.

2) Although portfolio policies which maximize the expected geometric
mean are of interest, the geometric mean is not used as a surrogate

utility function; attention is focused primarily on the N-period conse-

quences of following any given portfolio investment policy.

In our investigation of the multi-period portfolio problém,
we shall adopt a point of view which has been termed the "Markowitz
procedure" by Mossin (1973, p.44). The portfolio selection pro-
cedure is broken down into two steps. The first step involves
an elimination of certain portfolios in order to form an "efficient"
set of portfolios. In the next step, a final selection is made
among the portfolios in the efficient set. Our analysis will

focus on this first step in the portfolio selection process.

The results have direct application to Monte Carlo portfolio
simulation studies which use the market line model for generating
- portfolio return in each period of an investment horizon (see

€.g. Lorie and Hamilton, 1973, Ch. 15). The portfolio simulation



technique is typically used when the interrelationships of various
factors and assumptions on portfolio return are not well understood.
Without an hypothesis of likely behavior, designing simulation

experiments and analysing simulation output may be very difficult.

From our analysis we will be able to show the impact of capital
market and investment policy parameter assumptions on short and long
term portfolio return via the simulation process. This can serve as
a benchmark for evdluating how factors specific to a given situation
affect investment return and consequent funding behavior. The net
effect is to allow the use of the portfolio simulation technique in
a more active decision making role. This multi-period model of
bortfolio return should also prove useful in providing a framework
for setting investment policy for pension funds, endowment funds,
and other situations in which long range investment goals are of

critical importance.

In Section 2 we derive some general results concerning com-
pound return and N-period terminal wealth and provide the motivation
for the mean-variance compound return portfolio selection model.
Using only the assumption that single-period returns are inter-
temporally independent and identically distributed, we will show
that: a) expected compound return is a decreasing function of the
number of periods; b) expected compound return is asymptotically
directly related to the median of the N-period terminal wealth

distribution; c) the compound return distribution is asymptotically

normal.



In Section 3 we state the assumptions and derive the central
mathematical results of the N-period mean-variance compound return
model. This includes the multi-period geometric mean return
security market "line", the risk policy (B) which maximizes
expected compound return for a given investment horizon, and a for-
mula for the maximum long-term growth rate (with probability one)
available in a given capital market. We also discuss the rela-
tionship of the N-period mean-variance compound return efficient

portfolios with the single-period mean-variance efficient set.

In Section 4 we display the multi-period security market line
for various capital market parameters, analyze the N-period con-
sequences of constant portfolio risk and diversification strategies,

and suggest some implications for portfolio management.

In Section 5 we illustrate the'felationship between risk policy
and compound return probability assuming normality and solve for the
risk level which maximizes the probability that a given level of
wealth or compourd return will be achieved. The risk level which
maximizes compound return for a specified probability is also

derived. 1In Section 6 we provide a summary of our results.



2. Compound return and N-period terminal wealth: Some general

results.

From simple examples (e.g., Francis and\Archer, 1971, p. 13;
Latane and Young, 1971, p.978), it is easy to show that (generally)
the appropriate measure of portfolio return over an N-period invest-

ment horizon (assuming N greater than one) is the distribution of the

geometric mean.

The definition of the geometric mean or compound return over

N investment periods is:

S NS av a- r))e (L) -1 (4)

where R will now denote a vector of returns Ty, Tyseen, Ty in the
N investment periods. We make the assumption that returns T, i=1,
««+, N, are intertemporally independent and identically distributed,

the latter assumption being a mathematical convenience.

Expected compound return is a decreasing function of the number

of periodsz. To show this we write expected compound return in the form

| 1
NN |
E(Gy(R)=(E(1+r)Y)  -1. (5)

E(GN(R)) in (5) defines an Lp norm and can be shown to be a monotone

non-increasing (generally decreasing) function of N (Thomas, 1971,

p.317).

This result provides an alternative derivation and a reinterpretation

of the downward bias properties of the geometric mean found in Blume
(1974).



From (5) we can prove, by use of binomial series expansions

and other analytic techniques, that:

lim E(Gy(R)) = e=(1n(1*1)) | (6)

N>

which is the formula used by Hakénsson (1971) for determining long

term expected compound return.

We define (assuming existence) the paraméters

A=E(1n(1+r))
‘B=V(1n(1l+r)). (7)
Then, using a result in Rao (1965, p. 320), we can show that GN(R)

is asymptotically normally distributed with mean eA -1 and variance
eZAB/N. Therefore, the mean and variance of compound return asympto-
tically characterize the compound return distribution, and hence

are asymptotically the appropriate descriptive parameters of the

multi-period portfolio return distribution. As a corollary to this

result, the median and mean of compound return asymptotically coincide.

N-period terminal wealth, in units of initial wealth, can be

written as:

WN(R)=(1+r1)(1+r2) “on (1+rN). ' (8)
Consequently N-period terminal wealth and the geometric mean are

related according to

Wy = Gr) + N ©)
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Let Wp and Gp denote, respectively, the pth quantiles in thg
terminal wealth and compound return distributions for some fixed
investment horizon. Then the fundamental relationship between the

probability distribution of N-period terminal wealth and compound

return is expressed by:
Wp=(Gp+1)N. (10)
This relationship between the qQuantiles can be derived from the
fact that WN in (9) is a monotone increasing function of GN' From
(10) it follows that there is a direct relationship between the
medians of the two distributions for any N. More generally, the
mean and variance of compound return provide, via (10), an asymptotic

description of the N-period terminal wealth distribution.

The asymptotic distribution of the N-period terminal wealth

distribution is lognormal. This can easily be shown by applying

the central limit theorem to the log of (8).

It should be noted that the basic asymmetry of the right
skewed N-period terminal wealth distribution exhibited in (10)
is not reflected in the asymptotic compound return distribution.

This fact is one of the fundamental differences between the
single-period and multi-period portfolio selection problems.

In the single-period case, the return distribution and terminal
wealth distribution have the same essential characteristics. In
the multi-period case, the return distribution is asymptotically
symmetric, while the wealth distribution is right skewed. We
cannot ignore the possibility that, for a particular investor,

the right skew of the N-period terminal wealth distribution may

have high utility.
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We have shown that the mean of the compound return distribution

is asymptotically directly related to the median of the N-period

terminal wealth distribution. 1In highly skewed distributions, the

median is often the descriptive parameter of choice. The mean of

the N-period terminal wealth distribution which is dependent on large

but unlikely events, may, for.many purposes, be virtually irrelevant
as a description of the probability distribution. Therefore, the mean

(and median) of the geometric mean can be an excellent summary statis-
tic for a multi-period investor, relating N-period terminél wealth

to the context of single-beriod returns, in cases where the median

of the N-period terminal wealth distribution is an appropriate
description of the distribution. An investdr with a s#fé@f

first criterion (Roy, 1952) based on compound return may find

the mean and variance of geometric mean return a particularly

appropriate basis for multi-period portfolio selection

(c.f. Section 5).
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3. The mean-variance éompound return portfolio selection model:

Assumptions and derivations.

An approximation of the geometric mean return is used to cdmpute
the mean and variance of the geometric mean return distribution, when
the number of periods is finite, under the assumption that single-
period returns are approximately normally distributed. A number of
approximations exist which express the geometric mean as a function
of the moments of the returns (Young and Trent, 1960). For purposes
of mathematical tractability, 51mp11c1ty of derived results, and con-

51stency with the mean-variance description of single- perlod returns,

the one we shall use is:

_ = _ si(R) N
Cy(R) =1 - — | (11)

where r is the average and s?(R) is the (biased) sample variance of

the given returns.

Young and Trent have shown that (11) can be an accurate estimate
of the geometric mean of portfolio returns. It is evident, however,

that for (11) to be useful, the distribution of returns must be well

described by the mean and variance.

A good example of (11) as a poor estimate of the geometric mean
is given by Hakansson(1971, pp. 526~529). He shows that a portfolio
with maximum long term expected geometric return may not be mean-

variance efficient. This paradox can be explained by observing the

high skew in Hakansson's portfolio. The paradox disappears if we



apply mean-variance portfolio selection techniques to the case

where the mean and variance adequately describes the distribution

of portfolio returns.

Apart from our assumptions concerning preferences, and the highly
standardized premises in single-period portfolio theory such as
no transaction costs and taxes, we also assume portfolio rebal-
ancing and a unit value adjustment of wealth.for computing com-
pound return at the start of each period of the N-period investment
horizon. Single-period returns are assumed generated consistent
with the return-risk relationships (1) and (3) in a non-equilibrium H
capital market. The necessary return distribution assumptions
required for the mathematical derivations which follow are inter- .
temporal independence and a stationary investment opportunity set.
To compute the variance of the geometric mean in terms of the mean

andivariance, we will assume that the third central moment of single

period returns is equal to zero and the fourth central moment is equal

to three times' the square of the variance.

The assumption of a stationary investment opportunity set3
and constant investment policy over the investment horizon is
primarily a mathematical convenience. The mathematical results

remain essentially unaltered under a variety of non-stationary

intertemporal assumptions.

Appendix A provides a derivation of this section's results when
R is a random variable. This will be appropriate if R_ varies

intertemporally or is a single-period random variable a8cording
to the Black (1972) model for risky assets.
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The expected value for the geometric mean return (11) can be
computed using standard statistical techniques (e.g. Hogg and Craig,

1973). It then follows from our assumptions that the expected N-

period compound return is eqﬁal to

E(Gy(R)) = E(r) - E(s2?)/2

=u-(1-%}.)§_2. . - L o (12)

Using equations (1) and (3), the expected value of GN(R) can

be written in terms of the single-period investment policy and

capital market parameters4

E(Gy (R)) =R, +6 (E(M)-R_) - (1-5)B%02/202. (13)

Proceeding in the same way, we can derive the variance of GN(R) as

follows (see Fisz, 1963, p. 369, 9.2 and p. 371, 9.17):

-

V(G (R))=V(r) + V(s?)/4

2 2
=Farap

(14)
which can be written as
; 82 02 1 8202
VR = M (s - (15)
.

Equation (13), the N-period geometric mean security market "line",

specifies N-period expected compound return as a function of port-

folio risk (B).

For our purposes, the market environment is characterized by the
capital market parameters: expected market return, standard
deviation of market returns, and the risk free rate.
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For N>1, the formula for expected compound return (13) is a

quadratic function of beta with a peak5 at

_ (EM)-R) o2
B¢, N7 0 N

1] .

(1-) ";[ - (16)

Be N is the market risk policy which maximizes expected compound

return over N investment periods.

" Upon taking the limit of (13) as N+» we have the expected
compound return for a constant risk and diversification strategy

oVer an infinite number of investment periods: .
B<o
; M
lin E(GN(R)) = E*(G(R))=R0+B(E(M)-RO) -
N>

The accuracy of the mathematical results of this section is

dependent on the approximative power of (11). For values of the
Capital market parameters which typically characterize historical

data (e.g., Table 8.1 in Sharpe, 1970, p.148), the approximation

is sufficiently accurate for most purposes and provides a clear under-
standing of the basic characteristics of the N-period mean-variance
geometric mean return problem. However, an important exception is
that (16) fails to show that a maximum beta for expected geometric.
mean return may not exist. In Appendix B the basic results of this
section are rederived for two other more accurate approximations of
the geometric mean. As can be seen from the appendix solutions, the
non-existence of a maximum or critical beta occurs for values of the
Capital market parameters which indicate an optimistic capital market
environment. The resulting increase in accuracy of the appendix
approximations required further assumptions and resulted. in an increase
in the complexity of the solutions. In practical terms, the differences
hetween the three solutions are usually small for typical values of
the capital market parameters. If the critical beta in (16) is Iarge,
the possible non-existence of a critical beta should be checked using
the formulas in the appendix. In the following, we will assume the
existence of a critical beta, unless otherwise noted.
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Equation (13) shows that expected compound return decreases
with time and increases with increasing diversification (N>1).
The formula in (17) provides a lower bound for expected compound

return over time for given values of the investment policy para-

meters B and p.

The critical value of beta defined in (16) denotes not only
an optimal expected compound return risk level, but also a maximum
sensible level of market risk in the given market environment. To

illustrate this we observe that the variance in (15) is an in-

&
creasing function of market risk. Then for B greater than (16)°

there is a B’<BC N such that the compound return at 8° will be

greater than or equal to the return at B with less variance.

The values of the investment policy parameters which jointly

maximize expected compound return in (13) and (17) are:

p*:l

B*c n = (EOD-R))/(1-§)ok

(18)
B = (EM)-R))/of
Evaluating (17) at Bé and p* we have:
max E* (G(R))=R°+(E(M)-R0)2/20&. | (19)

This formula represents the maximum (with probability one) ob-
tainable compound return, or characteristic market return, from

investing in the given capital market, on a long term basis.
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From (12) the long run portfolio growth rate in terms of the

mean and variance of single period returns is:

lim E(G,(R)) = p-o02/2. ' (20)
N> N

Although (20) is not always a good estimate of (6), for consistency
and mathematical convenience we will continue to use (17), and by

implication (20), as an estimate of the long term growth rate, rather

than an approximation based directly on (6)6.

By definition, portfolios on the one-period capital market line
are perfectly correlated with the market portfolio. An examination
of (13) and (15) will show that for a given value of B8, E(GN(R))
increases and V(GMR)) decreases as p+1. Hence, the N-period geometric
mean capital market line will consist of portfolios on the one-period
capital market line. The set of N-period efficient portfolios will
lie on a segment of an approximately quadratic curve in (E(GN(R)),
quN(R)))space. The effect of the N-period analysis is to confine
the set of N-period mean-variance of compound reéurn efficient port-
folios to a subset of the one-period mean-variance efficient set.

In terms of the one-period capital harket line, the standard devia-

tion of N-period efficient portfolios ranges from zero to
=R%* ’ ’
OMax~8"c,NOM. | | 7‘ (21)

The approximation of the geometric mean in Appendix B.2 has the
correct long term growth rate (6).
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Equation (13) predicts that the portfolio risk-average geometric
mean return relationship should be approximately quadratic over an N-
period investment horizon and that, over long time periods and beyond

@ certain risk level, average portfolio compound return and median

wealth decreases. Most studies which have reported a linear relation-

ship between beta and portfolio return (e.g. Black, Jensen, and
Scholes, 1972) examined data over short time periods, usually monthly.

The work of Pratt (1971) and Blume and Friend (1974) provide some

empirical support for our results.
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4. Compound return and portfolio management.

In Fig. 1 which follows, a display of the market risk-ekpected
compound return relationship.given by equations (13) and (15) is
shown for a portfolio with a correlation of 0.9 with the market.’
An expected yearly (one-period) market return of 12%, a standard
deviation of 20% and a risk-free rate of 5% were assumed. The
values of the capital market parameters used in the following
figures are only illustrative and are not intended to represent

any prediction of future market performance.

For this case, average or expected compound return does not
increase substantially for 8>1. On a more general level, the
curves labeled "average' for the indicated yeafs demonsfrate a
general geometric mean return principle: high-risk return melts
away over time. The substantial gains in return which will, on
average, accrue to high-risk portfolios on a one~period basis will

tend to diminish over a sufficiently long investment horizon.

The curves labeled 5th and 95th percentile are derived on the
basis of the assumption that the geometric mean return is normally
distributed. They indicate that less than 5 percent of returns
will be below a 5th percentile curve in the given year, while less

than 5 percent of returns will be gréater than the 95th percentile.

Fig. 2 illustrates the effect on compound return of investing
in a considerably riskier capital market environment (higher market

standard deviation). The downward sweep of the average compound
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return curves demonstrates the fact that the quality of the capital
market environment has an important effect on the compound return
distribution. We also note, from an examination of (13) and (16),

that reducing the risk premium (E(M) —Ro) has an effect similar to

that of increasing the market variance.

One way to interpret and understand these results is to recognize
that negative return has a greater impact on. terminal wealth than
positive return. Therefore, if both large positive and large nega-
tive returns are possible, as they are with high values of beta or in
risky markets, the average compound rate of return may begin to de-

crease relative to a less risky portfolio.

Constant risk and diversification strategies can be understood
in terms of their expected compound return as a function of time.
We have observed from (13) that expected compound return decreases
with time and that (17) is the ultimate (with'probability one)
compound return of a constant risk and diversification policy.

The peak of the curve (17) as a function of beta occurs at

By = (BEM-R))/(a3/0%). (22)

B*p is the value of beta for an optimal long term constant risk

and diversification policy.

Although expected return for a portfolio with B>B*p will have
higher expected initial value than for the'B*p portfolio, the

effect of compounding, which decreases expected compound return,
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will be greater for the B8 portfolio. Given a sufficiently long

period of time -- often as little as three periods -- the expected
compound return from the high beta portfolio will be less than for

the B*p portfolio. The value of N for which this crossover effect

occurs is a decreasing function of beta.

" In Fig. 3, the expected compound return-time relationship is
displayed for the indicated values of befa, including beta* the
optimal long term constant risk policy from (22). The market and

correlation parameters correspond to those of Fig. 1.

In the rela%ively low risk (or high risk premium) market of
Fig. 3, B*p=1.42. Thus increasing market risk not only raises
initial expected return, but also increases expected long term

compound return as well, up to the critical value of 1.42.

In Fig. 4, the expected compound return-time relationship is
presented for the riskier capital market case corresponding to

the market and correlation parameters of Fig. 2. This figure
illustrates the significant deterioration of expected compound
return that is likely in a high risk markef. ‘Rising market risk
lowers the ultimate expected portfolio compound return, even

as it increases initial expected return, for any value of beta
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7

greater than 0.35°. Although the preceding analysis has been dis-

cussed within the context of constant risk strategies, various non-

stationary parameter assumptions, assuming intertemporal independence

of market returns, leave the essential results unchanged.

Using the characteristic market return formula (19), we can com-

pare constant risk policies across markets. Suppose MA and MB denote
total returns from two capital markets such that B is a higher risk-

higher return market; i.e.,

E(MB) > E(M,)

but the characteristic return (19) from A is greater than for B.
Although initial expected return, for optimal constant risk policies,

will be greater in the first period for B than for A, long-term

expected compound return will be smaller.

The value of B*C in (18) is such that, on a sufficiently long-

term basis, any portfolio with B>B*C will have less return and more

risk. Since B*C is dependent on capital market parameters alone, it

can be used to characterize the relative riskiness of the given market.

In order to determine the accura
Carlo simulations were performed
horizon for various values of th
period's return was generated us
Returns were left truncated and
results showed that (16) was a g
and that (13) was,in general,

Cy of our analytic results, Monte
over a twenty-period investment

¢ capital market parameters. Each
ing the IBM-SSP Gauss subroutine.
accumulated at minus one. The

ood estimate of the critical beta

a good approximation of expected com-
pound return. When there was a significant difference, we found

the analytic solution tended to overstate expected compound return.

In general (15)tended to underestimate the variance of compound
return.
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5. Compound return probability.

Estimates of compound return probabilities often have been con-
sidered of primary importance in long range investment planning and
have been cited as a major reason for conducting a portfolio simu-
lation study (Williamson, 1970, p.83). Using advanced statistical
techniques (Rao, 1965, p. 321(ii) and Fisz, 1963, 9.20) we can show
that the distribution of (11) approaches a normal distribution as
N+w. Using the limiting distribution of (11) as justification, we
consider an approximate relationship between risk policy and compound
return probability for any investment horizon and level of compound

return or N-period temminal wealth.
We will assume that
P(Gy(R) > K) =1 - ¢(z) (23)

where ¢(z) is the cumulative normal distribution of the standard

normal random variable z, and where

BZ 0-2
K-R -B(E(M)-R) + (1-3 M
z = 0 0 N zpz
B o 2.2
M 1. B%g (24)
. 1+ (1-%) M
P\N \/ N 2p?

We note that as N+, the probability (23) is either one or zero

depending on whether the required rate of return K is less than

or greater than E*(G(R)) in (19).

The relationship of risk and compound return probability (23)

for achieving at least a 0% compound return for investment horizons
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of one, five, and twenty investment periods (years) is illustrated
in Fig. 5. The capital market parameters are those given in Figs. 1
and 3. Fig. 5 shows that on a one-year basis, the effect of in-
creasing market risk is to reduce the probability that a 0% return
level will be achieved. The increase in variability in the port-
folio dominates increasing return. The compounding effect of time

reduces the variability of return which, in this case, increases

the probability.

Fig. 6 illustrates the effect.of a reduced fisk premium on com-
pound return probabilify, where K > Ro' First year compound return
probability is considerably less than the corresponding probability
in Fig. 5. The compound effect of time, which decreases variance,
is not sufficient to compensate for the inherent high risk and lowered
expected compound return in this market. Therefore, the compound

return probability in the twentieth year is lower than in the first

year.

In the following subsections A and B, we state and solve two

problems concerning optimal risk policies and compound return pro-

babilities.
A. Maximum compound return probability.

By minimizing z in (23), as a function of B, we can find
the risk policy, for any investment horizon, which maximizes the
probability that a given compound rate of return or wealth level

will be achieved.
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The resulting condition for a minimum is a cubic equation in

| 1, a,2 :
R, -K+(1-p) 7%7_(1-2(K-R0))82
1, y°
*EM - RY(L-) M g -, (25)
2p2

The following iteration formula for finding the B which maxi-

mizes compound return probability (B*K N)’ has been found to be
. ?

useful:

B=/2'p K- R, . . (26)

oM VN Y (EM) - R }B*1+2(R -K)

For parameters of interest, the denominator in the radical (26)
should be positive. Therefore, a solution exists only if XK > Ro'
If K < Ro’ the compound probability is at its maximum 1.0, when
B*K,N = 0. From (25) it follows that B*K,N is a decreasing func-

tion of the return level K. By taking the limit as N+, we can

find, ﬁsing (25) or (26), B*K, which is the long run dominant risk
policy for the compound return probability (23) for given compound
rate of return K. Using (26), the peaks of the five and twenty

year probability curves in Fig. 6 occur at 1.01 and 0.92 respec-

tively.

B. Maximum K for a specified compound probability.

By our assumption of normality of GN(R), if K=E(GN(R)), the
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probability (23) is 0.50. Therefore, the probability of achieving
or surpassing the maximum expected growth rate over the investment
horizon following a critical beta policy is 0.50. An investor may
be willing to forego a high growth rate in order to achieve a growth
rate with a specified probability. We will now solve the problem of
finding the risk policy which maximizes the growth rate K in (23)

subject to a specified probability level P . Thisproblem amounts

to maximizing compound return with a probability side condition.

In mathematical notation, we seek to maximize K as a function

of B, where K satisfies the relation

P(Gy(R) > K (8)) =P, (27)

and P0 is a given specified probability level.

Note that, if Po = .90, then ¢(zo)=.10, where Z4 is the value
of the standard normal variable. Therefore Zg» in the above
example, will be negative. For convenience, we will use -z _, so
that the correspondence between Po from tables of values of standard

normal cumulative probabilities and the probability PO is direct.
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Using (24), with "2, replacing z, we can write K as a function

of B as:
g 1 6502
K(8) = R, + BEM-R) - (1-§5) —M
2 p?
(28)
z 0.8
0 M 2 2
R 1+(1-%) B oy

Taking the derivative of XK(B8) with respeét to B and setting
the equation to zero, we have a fourth degree equation in B8 which
must be satisfied for a risk policy which maximizes compound re-
turn or wealth, subject to the probability relation (27). Instead
of writing the fourth degree equation, we give an iteration formula
for the solution which more clearly describes the functional rela-

tionships of the optimal risk policy with the values of the various

parameters:

. _ 8202
1 M

(E(M)'Ro)02 | R O(1+(1'N)*——;“‘)
B = 1 T P
2 l - _)

GM ( N

‘ (29)
oy VN (1-%) \[1+(1-§)820§1/202

Let 65 N denote the risk policy which maximizes the growth
o’
rate that can be achieved in a given investment horizon, for a

*

specified probability level Po’ Using (28) we note that 3§ N+BC
0,

when N+». Also, using (29), B*Po’N= BC,N when P0=O.50 and
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8 . EOD-R)0? zop
o’ -

P |
o M(l N) . O'M /IT

(30)

Since a growth rate equal to the risk free-rate can be assured
with probability equal to one, then B* P N 20. If P is suffi-

ciently high, K(B8)in (28) may have a max1mum and (29) may have a

solution at a negative B.

From an analysis of (30), for parameters of interest, the

condition

< (EOD-R)o/N

g

(31)
M

is necessary and nearly sufficient for B*PO’N>0.

Inequality (31) is of some theoretical interest. Not every
probability level PO 1s attainable with a positive risk policy.
For conservative invesStors who require a high probability of
assurance, Po’ the only appropriate risk policy may be zero risk.
On the other hand, the presence of the /N factor in (31) indicates
that long term investment horizons can assure high probability

levels concerning compound rates of return and levels of N-period

termminal wealth.
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6. Summary and conclusions.

" From considerations of the geometric ﬁean return distribution
we have shown that: 1) the distribution is asymptotically normal,
and therefore that the mean and variance are asymptotically the
appropriate descriptive parameters of the distribution; 2) expected
compound return is a decreasing function of the number of periods;
3) the quantiles of the geometric mean return distribution are
directly related to the N-period right skewed terminal wealth
distribution. In particular, this implies that the mean of com-
pound return is (asymptotically) directly related to the median
of N-period terminal wealth. For multi-period risk averse maxi-
mizers of the expected utility of N-period terminal wealth,such
that the median is an apprepriate descriptive parameter of the
N-period terminal wealth distribution,or for investors with (multi-
period) safety first objectives, the mean and variance of compound

return can be a useful criterion for multi-period portfolio

selection.

A mean-variance approximation of the geometric mean, in
conjunction with the Fama (1970) analysis and the single-period
return-risk relationships (1) and (3), was used in order to
derive a model of multi-period portfolio performance. It also
allowedus to determine efficient single-period investment policy
portfolio decisions for a risk-averse multi-period investor who
chooses among alternative portfolios on the basis of the mean

and variance of compound return. The major results of our
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analysis are: 1) the N-period compound return security market
"line" (13} is approximately quadratic as a function of market
risk; 2) a critical beta (16) generally exists which is a maxi-
mum sensible risk policy; 3) the N-period set of efficient mean-
variance compound return portfolios is a subset of the single-period
mean-variance efficient set; 4) a formula for the maximum long
‘term growth rate obtainable (with probability one) to any investor
in a given capital market (19) can be used to characterize capital

markets or to compare one market with another.

By assuming thaf compound return probability is normally
distributed when N is finite, risk policies were found which
maximize: a) the probability that a given growth rate will
be achieved over the N-period investment horizon; b) the growth

rate that can be achieved in an N-period investment horizon for

a specified probability level.

The objective of the analysis has been to clarify the long
term risk-return relationship for rational portfolio decision
making. This has‘led to restrictions on the (one-period) effi-
cient investment opportunity set and to new tools. for'analyzing
the consequences of a long term investment policy. An N-period
risk-averse expected utility maximizer of N-period terminal wealth
is thus supplied with a clearer basis on which to determine an

optimal investment policy.
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For portfolio management, perhaps the most important aspect
of this analysis is the awareness of the limitations of high
beta securities and portfolios, and the possible suboptimality
of fully invested market-like portfolios, such as mutual funds,
for investors with long range investment objectives. Concomitantly,
any long term assessment of investment policy should recognize

the critical role of market parameter assumptions on the decision

making process.
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Appendix A: Compound return mean-variance analysis when R0

is a random variable.

We assume that the single-period return generation process

for a security or portfolio is consistent with

E(R) = E(R))(1-8) + B E(M)

2 _ 2 ’ _ i 5 .
qRo (1-8)2% + Bzoﬁ + 28(1-B)COV(R_,M) (1A)

N

p}-

vhere p; is a multiple correlation. It follows that

E(Gy(R)) = E(R,) + B(E(M)-E(R))

(1-§) 0k (1-8)2+B20% + 28 (1-8)COV(R,,M)) s

2
1

2p

(o2 (1-8)%+B2%¢2, + 28(1-B)COV(R_,M))
V(G (R)) = o °M 0

N
(3A)

10 D) (6 (1-8)48%0%, + 26(1-BICOV(R,,M))

2
2p1
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2
(E(M)-E(Ro)pf op - COV (R_,M)

4A
Be,N *__ o (4A)

R

1
(1"N)(°§0 + 0f-2COV(R_,M)) ozo + 02,~2COV(R_,M)

If COV(RO,M) = 0, then in general, the net effect of the
introduction of RO as a random variable with respect to the
assumed return generation process is to decrease expected com-
pound return (2A), increase the variance of compound return (3A)
and decrease the critical value of beta (4A), with respect to

the corresponding derivations in Section 3.
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Appendix B: Alternative approximations of the'geometric mean.

1) Using Taylor's formula for N variables, expanding (4)

about the point (u,u ... ,u) and ignoring terms of order three

and higher or those with zero expectation we derive the approxi-

mation:
2
1
1-2
Gy(R) & T - SL(_N__
2(1+w)
(1B)
where s; is definéd as
s2 - Z(ri‘_u)z
)
N
Then
. (1_§) 82 O.MZ
E(Gy(R)) = R, + B(E(M)-R) - (2B)
2p% (1+R +B (E(M)-R))
BZ‘OMz (1_%) BZO.MZ
V(Gy(R) = — - (1+ )
- @N 202 (1+R +B(E(M)-R ))? (3B)
_ (1+R 1
o =_HRo) 1
(EM)-R) 202 (E(M)-R )2
1- ° (4B)

1
2 - —
OM (1 N)
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" From an analysis of (4B) it can be shown that BC,N has,
in general, the functional characteristics of (16). A major
difference is that a critical beta may fail to exist in (4B)
if the risk premium is sufficiently large or market variance
sufficiently small. Generally, expected compound return is

larger, variance smaller and the critical beta greater than

the corresponding derivations in Section 3.

Equations (1B) to (4B) will be more accurate (statistically
efficient) than coiresponding estimates in Section 3, since more
prior knowledge was assumed in their derivation. They may prove

useful in portfolio simulation studies since p is a given.

2. An alternative approximation of E(Gy(R)) will be derived

which has the correct limit (6) as N+,

For r suitably constrained, we write the binominal series expansion

1
ES 1 .
e Gbe abhed e
+7r = = - + + .
N 2N 2 3N
1 .
(1-3) 2 3
LA 5 N T
]_+N + N ( "5 + T . )

T 1 In(1+r
e T Ay i R (5B)
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From (5B) and (4) the geometric mean can be approximated

by

N In(l+r,) r, - In(l+r,)

GN(R)QT”I (1+ - + - . ) -1. (6B)
j=

Hence, assuming intertemporal independence and identically

distributed returns,

E(1ln(1+ E(r)-E(In(1+r)) N .
E(Gy(R)) = (1+ (In(1+7}) + — y -1 (7B)
N N?

which can be shown to have the limiting value (6) as N-+w,

Using the fact that

0.2

E(1n(1+1))=1n(1+p) - —
2 (1+p)?

for values of u and ¢ which typically characterize single-
period returns, we can approximate (7B) in terms of the mean

and variance of returns in each period:

o2 g?
In(l+p) - 2(1+u)?2 u-1n(l+u) + Z(1+p)?2 N
E(Gy(R))=(1+ + )7 -1. (8B)

N N2
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