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I. Introduction

Empirical tests of the Sharpe [36]-Lintner [23]-Black [3] Capital Asset
Pricing Model (CAPM) have generally concluded that there is a positive, approxi-
mately linear, trade-off between average return and systematic risk (beta) for
portfolio returns of common stocks. Most of the empirical studies, however,
have reported data for short, usually monthly, time intetvals.l Exceptions to
this rule include Blume and Friend {8] and Sharpe {38, pp. 289-292]. Their
data provide evidence that long-term wealth ratios are concave, possibly non-
monotonic, functions of beta. These data are surprising since, if returns are
intertemporally independent and the linear return model of CAPM is correct, ex-
pected multiperiod terminal wealth is a convex, monotone increasing function of
beta. The results of this paper provide a theoretical framework for interpret-
ing the long-term empirical data which does not violate the notion of a mono-
tone increasing expected terminal wealth-beta relationship.

If empirical evidence of the ex post behavior of common stock portfolics
is consistent with market efficiency and a linear positive relationship of ex-
pected return with systematic risk (Jensen ([20]) in each period,2 then the CAPM
parameters describing the level of systematic risk and diversification provide
empirically and theoretically relevant descriptions of normative investment
policy. 1In perfect and efficient capital markets (Fama (10]), the choice of the
level of systematic risk may be the only relevant investment decision since
perfect diversification is costless. For the purposes of a practical theory’of
portfolio management, our definition of normative investment policy will include

the level of portfolio diversification.

*

Bache Halsey Stuart Shields,Inc., New York City. Farlier versions of this
paper were presented to the Western Finance Association, June 1978, and to the
Seminar on the Analysis of Security Prices, May 1976.

lThree such studies are: Black, Jensen and Scholes (4]; Blume and Friend
(7); Fama and MacBeth (12].

2Recently, a number of studies have reported results which appear to con-
tradict the Efficient Market Hypothesis. For a review of some of these studies
see Ball [2].
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One of the most serious defects of CAPM as a guide for practical invest-
ment managementB'4 is its single-period nature. Many portfolios under institu-
tional management, including pension funds, endowment funds, and trust funds,
have long-term investment objectives. What is required is an understanding of
the multiperiod‘consequences of single-period investment policy decisions. Hakansson
(14] has shown that mean-variance efficient portfolios may have a negative long-
term expected geometric mean {(growth rate, compound return) and, therefore, that
continued reinvestment may lead to ruin with probability one. Although the re-
turn distributions in Hakansson's examples are not representative of "normal”
pértfolio return distributions, nevertheless, Hakansson's result is an important
caveat to users of the mean-variance single-period models as a normative theory
of investment. Under the stated assumptions, the results in Section III provide
simple approximations for estimating the effect of (unvarying) single-period
investment policy on the mean and variance of the portfolio's geometric mean
return over the investment horizon.

The geometric mean often has significant explanatory power for many para-
doxical results related to multiperiod investment. A simple example may be use-
ful as an illustration (Block [5]): an investor invests 50 percent of his assets
in risky securities in each time period; either his return matches the amount
invested or it is lost; and there is a 50 percent chance of either outcome in
each time period. Analysis reveals the paradoxical conclusion that this fair
game leads to ruin with probability one. For N > 2, the expected geometric
mean is negative and declines to the limit -13.4 percent, indicating the expec-
tation of diminished wealth over time. As we will show, the expected geometric
mean is, at least asymptotically, an estimate of the geometric mean of median
terminal wealth. The expected geometric mean is an investment tool with the
mathematical tractability and convenience of a mean that provides useful in-
formation concerning long-term median investment performance as a consequence
of single-period investment decisions. Used with an awareness of its limita-
tions, the statistical parameters of the ex ante geometric mean distribution

can be a useful adjunct to the financial planning process.

3Another fundamental critique of CAPM as a practical tool for portfolio
management is Roll [30].

4'I‘he use of single-period capital market equilibrium models such as CAPM
in a multiperiod framework is problematic. It implies either that intertem-
poral returns are not identically distributed or that the equilibrium market
is equally weighted (Rosenberg and Ohlson (31]). What we will require is that
the single-period return generation process is consistent with the Security
Market Line (SML) of the CAPM.
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A number of authors have examined properties of the parameters of the geo-
metric mean distribution as an alternative portfolio selection criterion.5 In
particular, Hakansson ([l15] has proposed a mean-variance geometric mean (Hakansson)
efficient frontier as a natural multiperiod generalization of the Markowitz {25]
mean-variance efficient frontier. The Hakansson criterion, however, is often
not consistent, even asymptotically, with expected utility maximization.6 One
basic objective of this paper is to examine the relationship of the parameters
of the geometric mean distribution to the terminal wealth distribution and,
thereby, clarify some strengths and limitations of a mean-variance geometric
mean analysis of portfolio return.

Hakansson's criterion may be useful in many investment situations of prac-
tical importance. Hakansson ([15] and Thorp [39] list a number of attractive
investment objectives achievable by maximizing the limit of the expected geo-
metric mean as N+ or, eguivalently, expected lcg utility in each period. The
portfolio growth rate is often an important part of stated investment objectives
of professionally managed portfolios and is generally a critical consideration
in the evaluation of ex post portfolio performance.

The mathematical results of this paper have direct application to Monte
Carlo portfolio simulation studies which use the market line model for describ-
ing portfolio return in each period of an investment horizon (see e.g., Lorie
and Hamilton [24, Ch. 15]). From our analysis we will be able to show the im~-
pact of capital market and investment policy assumptions on mutliperiod
portfolio return underlying the simulation process. This can serve as a bench-
mark for evaluating how factors specific to a given situation affect portfolio
returns and consequent funding behavior.

In Section II, we derive some theoretical results concerning the geometric
mean distributional characteristics and relationship to the N-period terminal
wealth ratio distribution. In Section III, using a statistically tractable
approximation of the sample geometric mean, we derive the (approximate) rela-
tionship between single-period risk and diversification policics and N-period
mean-variance geometric mean return. In Section IV, we display the expected
geometric mean as a function of beta and discuss the application of our analysis
to portfolio management and interpretation of long-term empirical data. 1In

Section V, we provide a summary of our results.

5These include: KXelly [21], Latane [22]), Markowitz [25, Ch. 6], Breiman
{91, Hakansson [15], Hakansson and Miller (17].

6
See Samuelson (33], Merton and Samuelson (27), Samuelson and Merton (34},
Hakansson and Miller {17], Markowitz {26], and Hakansson (16].
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II. The Geometric Mean and N-Period Terminal Wealth
Ratio: Some General Results

The definition of geometric mean return over N investment periods7 is

(1) G.(R) = \N
N \\/[ M+r) ez l+r) -1

where R will denote a vector of returns . Toreees Ty in the N investment
periods. We assume that returns ti > -1, i=l,..., N, are intertemporally in-
dependent and identically distributed. The quantity 1 + ri will be referred
to as the holding period return or wealth ratio in period i.

Property 1: The expected geometric mean is a decreasing function of the
number of periods.8

To show this we write the expected geometric mean in the form

_.1._ -

(2) E(G(R) = (E(L+n) N -1,

E(GN(R)) in (2) defines an Lp norm and can be shown to be a monotone nonincreas-

ing (generally decreasing) function of N (Thomas (39, p. 317]).

Property 2:

a.S.

(3) : GN(R) ——->eE(1n(1+r))_1

as N —o>o;

i.e., Gy(R) converges almost surely (strong law of large numbers), to the con-
stant eE(ln(l+rD_1. This is a standard result (e.g., Markowitz [25, Ch. 6])
and can be proven using the well-known almost sure convergence of
1n(G, (R)+1)—>E(In(1+r)) and the continuity of e*.
Property 2 is a justification of the egquivalence of maximizing the ex-~
‘pected geometric mean with maximizing E(ln(l+r)), when N is large (e.g., Mar-
kowitz [25, Ch. 6]; Samuelson (33]). 1In any real application, the limit is not
reached. It is, therefore, of interest to know how a decision based on the
limit criterion differs from the expected geometric mean criterion for

given finite N. Hakansson (14, Sec. 11}, using Monte Carlo simulation, examines

7'rhis definition presumes that cashflows are absent and all proceeds are
reinvested in subsequent periods over the investment horizon.

8 . . . ) ) .
This result provides an alternative derivation and a reinterpretation
of the downward bias properties of the geometric mean found in Blume [6).

J
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special cases of the "intermediate run" problem. An important part of the
analysis in this paper is to provide analytic estimates of statistical para-
meters and probabilities of the intermediate-run geometric mean distribution.
Define the parameters: A=E(ln(l+r)), B=vV(ln(l+r)}. It is well known that
the distribution of the geometric mean is asymptotically lognormal with mean:

+
eA+B/(2N) e2A B/N(eB/N-l)e (e.g., Aitchison and Brown (1, Ch 2]).

-1l; variance:
It can also be shown, however, that

Property 3: GN(R).is approximately normally distributed with mean: eA-l;
variance: BezA/N for large N.

This result follows from Rao (29, pp. 319-320]. ,

Some intuition concerning the distribution of the geometric mean for large
N can be derived from examining the case when holding period returns are assumed
to be lognormally distributed in each period. This assumption implies that the
geometric mean is lognormally distributed for any value of N. This lognormal
distribution, however, has statistical characteristics similar to that of a
normal distribution when N is large; i.e., the mean approaches the median and
the measures of departure from normality, the coefficients of skewness and kur-
tosis approach zero (Aitchison and Brown (1, pp. 8-9]). Ultimately, the geo-
metric mean distribution converges to a point distribution.

As a consequence of the distributional properties of the geometric mean
for large N, it follows that the mean and variance are asymptotically relevant
parameters for describing the multiperiod portfolio return distribution. An
important corollary is that the mean is a consistent estimator of the median
of the geometric mean. The asymptotic distributional properties are also im-
portant for linking expected geometric mean return to the median of the terminal
wealth distribution.

N-period terminal wealth, in units of initial wealth (the wealth ratio
over N periods), can be written as: wN(R) = (1+r1) (l+r2)...(1+rN). Conse~
quently N-period terminal wealth and the geometric mean are related according
to WN(R) = (GN(R)+1)N. Let wp and Gp denote, respectively, the pth quantiles
in the terminal wealth and geometric mean distributions for some fixed invest-

ment horizon.

PrOErtz 4:
(4) ‘ W o= (G +1)Y,
: P p

Equation (4) expresses the fundamental relationship between the geometric mean
and terminal wealth distributions. It can easily be derived from the fact that

WN is a monotone increasing function of G". In particular, (4) shows
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the direct relationship between the medians of the two distributions for any N.
To the extent that the normal distribution describes the distribution of the
geometric mean, the mean and variance provide, via (4), a useful description

of the N-period terminal wealth distribution. Assuming esymptotic Properties
hold, the median of the geometric mean distribution is e"-1, which by (4), is
the growth rate of median terminal wealth. E(GN(R)) is, in the asymptotic nor-
mal caserequal to eA-l and, in the asymptotic lognormal case, equal to eA+B/2N-1.
Therefore, the expected geometric mean can be useful as an estimate of median
investment performance over the investment horizon when N is sufficiently large.
It should be noted, however, that a symmetric interval about the mean in the
geometric mean distribution corresponds to an asymmetric interval about (approxi-

mately, for large N) the median of terminal wealth.

The asymptotic distribution of N-period terminal wealth is lognormal.
This can easily be shown by applying the central limit theorem to the log of
the definition of wN(R). This result implies that the distribution of single-
period returns over increasingly long time periods will tend toward log-
normality.

The basic asymmetry of the asymptotically increasingly right-skewed N-
period terminal wealth distribution is not reflected in the asymptotically
symmetric geometric mean distribution. This fact is one of the fundamental
differences between the single-period and the multiperiod investment problem.
Given the context of expected utility maximization over terminal wealth and
possible high utility of the asymptotic right-skew of the terminal wealth dis-
tribution (Hakansson {16]), considerable care must, therefore, be exercised in
inferring useful investment decisions from the geometric mean distribution.

From the definition of WN(R) it follows that
N
(5) E(WN(R)) = (1l+y)

i.e., the mean of single-period returns (u) is directly related to the mean of
terminal wealth. In skewed distributions, the median is often the descriptive
parameter of choice for central tendency. In concrete investment terms, the
probability that any given investor will achieve the mean may be very small.

In highly right-skewed terminal wealth distributions, median terminal wealth is
an estimate of the investment performance experienced by a typical individual
or institution over the investment horizon. The appropriateness of the mean-
variance geometric mean criterion to multiperiod investors is, therefore, re-

lated to the appropriateness of portfolio objectives described in terms of
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median terminal wealth and risk measures consistent with asymmetric intervals
according to (4) about the median, when N is large.

Given the validity of our theoretical assumptions, our analysis has some
implications for the interpretation of geometric means computed from empirical
studies of long-run rates of return. On the one hand, an average terminal wealth
ratio may be computed and the results reported as a geometric mean. In this
case, the geometric mean is simply a summary statistic of the average of the
terminal wealth distribution. If, however, terminal wealth ratios are expressed
as geometric means and an average geometric mean is computed, the result is a
summary statistic (asymptotically) related to the growth rate of median ter-

minal wealth.

III. Investment Policy and the Geometric Mean Mean-Variance Parameters

An approximation of the sample geometric mean return is used to compute
the mean and variance of the geometric mean return distribution as a function
of (fixed) single-period risk and diversification policy when the number of
pericds is finite. The effect of single-period investment policy on multiperiod
return and terminal wealth is described and contrasted with the single-period
case.
A number of approximations exist which express the sample geometric mean
as a function of the moments of the returns (Young and Trent [42]). For pur-
poses of mathematical tractability, simplicity of derived results, and consis- N
tency with the assumption of a mean-variance description of the single-period

return distribution, the one we shall use is

- sZ(R)
Y - —
2

(6) GN(R)

where r is the average and sz(R) is the (biased) sample variance of the given
returns.

Young and Trent [42] have shown that (6) can be a useful approximation of
the sample geometric mean for monthly and, to a lesser extent, yearly historical f
capital market returns. A significant, but small, downward bias was observed.
The validity of the approximation (6) is dependent on the adequacy of the mean-
variance description of the single-period return distribution, the serial inde-
pendence assumption, and the values of the mean-variance parameters. The ap-
proximation can break down badly in some investment settings of practical in-
terest.

The single-period return generation process is assumed to be consistent

with the SML of the Sharpe-Lintner CAPM; i.e.,
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(7 ‘ U = E(R) = Ro + B(E(M)-Ro) = RO+BA
where

2
(8) . B = COV(R,M)/UM.

Using a CAPM framework, thé symbols in (7) and (8) are defined as follows:
R is the total return on the capital asset or portfolio for the period; M is
the return on the market portfolio (value weighted) of all assets taken together;
Ro is the return on a riskless asset for the period:9 COV(R,M)Zis the covariance
between the asset or portfolio and the market portfolio; and %y is the variance
of return of the market portfolio. Using (8) and by definition of the correla-

tion, p, the standard deviation of returns can be written as

(9) 9 = BUM/p.
)

Equations (7) and (9) completely specify the single-period return-risk
relationships for an asset or portfolio of assets for the assumed return genera-
tion process. For our purposes, the market environment is characterized by the
capital market parameters: expected market return; standard deviation of market
returns; and the risk-free rate.

To compute the variance of the geometric mean in terms of the mean and
variance, we have assumed that the third central moment of single~period returns
is equal to zero and the fourth central moment is equal to three times the
square of the variance.

The expected value for the geometric mean return (6) can be computed using
standard statistical techniques, e.g., Hogg and Craig [18]). It then follows
from our assumptions that the expected N-period geometric mean is approximately

equal to
(10) E(G(R)) = u=(1-1/N)02/2. -

Using equations (7) and (9), the expected value of GN(R) can be written

in terms of the single-period investment policy and capital market parameters

9 . . . . . .
It is a simple exercise to derive this section's results when Ro is a
random variable which may or may not have a nonzero correlation with market
return in each period.
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. 22,2
(11) E(Gy(R)) = R +8A-(1-1/N)B%0./(20°).

Proceeding in the same way, we can derive the variance of GN(R) as follows
(see Fisz (13, p. 369, 9.2 and p. 371, 9.17]):

(12) V(G (R) (1+(1-1/N) o 2/2) a2 /N

which can be written as
(13) V(G (R)) £ (1+(1-1/N) szc;/(zpz))ezo:/(ozm.

The approximation (11) is an N-period expected geometric mean description of a
return-generation process which is consistent in each period with the single-
period SML.10 Of particular interest is the role of total risk (9) implicit in
(11) and the fact that increasing diversification increases the expected N-
period geometric mean.

For N>1, the formula for the expected geometric mean (1ll) is a quadratic

function of beta with a maximum value11 at

1o’rhe results of our analysis may be extended to include a multifactor
return-generating process such as Ross {32]. 1In this case, the geometric mean
parameters are functions of a vector of the coefficients of the systematic risk
factors and the level of diversification.

11The validity of most of the results of this and the next section depends
on the approximative power of (1ll). There are, however, important characteris-
tics of the expected geometric mean that are not captured by this simple approxi-
mation. In the Appendix, two more theoretically accurate approximations are
examined. The Appendix approximations show, among other things,that: (a) the
critical beta may fail to exist if g _<2A or when N is small; and (b) the expected
geometric mean may not be well approximated by a quadratic function of beta
beyond the critical value. The increase in theoretical accuracy of the Appendix
approximations results in an increase in the complexity of the solutions. 1In
practical terms, the differences between the three solutions are often, though
not always, small. 1In particular, the approximation of the critical beta (14)
is often a significant underestimate; the approximations (3A) and (9A) are,
generally, the estimates of choice. In order to examine the accuracy of the
analytic approximations of this section, and of those in the Appendix, Monte
Carlo simulations of multiperiod investment were performed over a 20-period in-
vestment horizon for various historical values of annual capital market para-
meters for values of beta from zero to two. FEach period’'s return was generated
using a (left) Truncated Normal Distribution derived from the IBM-SSP Gauss sub-
routine. The results showed that the approximations were, generally, reasonable
estimates of the simulated geometric mean return distribution's statistical
parameters. In the following, we shall assume that "typical" values of capital
market parameters are used and that a normal range of the investment policy
parameters of large stock portfolios is under consideration. Under these assump-
tions the approximations will provide a useful description and a simple under-
standing of the relationships between investment policy and capital market para-
meters and N-period mean-variance geometric mean.
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(14) Bo = Aoz/((l-l/N)o:).

c,

BC N is the market risk policy which maximizes the expected geometric mean over
’

N investment periods. For future convenience, we define Bc = lim BC
N—=

The value of the "critical" beta defined in (14) denotes not only an optimal

N°

expected geometric mean risk level, but also a maximum sensible level of market
risk in the given market environment with respect to the growth rate of the asset
or portfolio given a fixed level of diversification. Since the variance in (13)
is an increasing function of market risk, increasing beta beyond the critical
value will increase the variance while decreasing the expected value of the
growth rate.

In terms of the terminal wealth distribution (assuming asymptotic proper-
ties hold for the finite N-period investment horizon), increasing beta beyond
its critical value will: (a) decrease median terminal wealth; and (b) increase
mean terminal wealth.12 The many attractive multiperiod properties of the mean-
variance geometric mean criterion result in part from the statistical proper-
ties of the median in skewed distributions. As Samuelson [33] points out, how-
ever, an individual with a Pascal utility function (U(W)=W) will not be im-
pressed with the median's properties. Such considerations illustrate some of
the subtleties and pitfalls of long-range investment planning; in the absence
of a specific utility function, multiperiod investment policy decisions must
be made with considerable care and attention to the valid needs, objectives,
and resources of the individual or institution.

By definition, portfolios on the single-period capital market line are per-
fectly correlated with the market portfolio. An examination of (11) and (13)
will show that for a given value of 8, E(GN(R)) increases and V(GN(R)) decreases
as p —> 1. Hence, to the extent that our approximations are valid, the fixed
investment policy N-period mean-variance geometric mean efficient frontier is

composed of a subset of portfolios on the single-period capital market line.

IV. The Geometric Mean Criterion and Portfolio Management

The importance of a theoretical tool in a practical investment setting is
related to the magnitude of the effects it predicts and to its relevance in nor-

mal investment decision making. By evaluating the expected geometric mean (1l1)

12'rhis result follows from (5) and (7).
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for capital market parameters of historicall3 and current interest, it can be
shown that critical betas may exist within the range of normal investment policy
and that the multiperiod effects of single-period assumptions and investment
policy on the growth rate of the portfolio can differ significantly from the
simple linear model.

In Figure 1, which follows, a display of the market risk-geometric mean
relationships given by equations (11) and (13) is shown for a portfolio with a
correlation of 0.99 with the market. An expected yearly (single-pericd) market
return of 15 percent, a standard deviation of 25 percent, and risk-free rate of
8 percent were assumed. The choice of annual data as the single-period and the
values of the capital market parameters are for illustrative purposes only.14
Alternative definitions of the single-period do not substantively alter many
of the conclusions of this section.15 The curves labeled 5th and 95th percen-
tile are derived on the basis of the assumption that the geometric mean is nor-

mally distributed.

The expected geometric mean curves dembnstrate that the substantial gains
in wealth which will, on average, accrue to high-risk portfolios, tend to be
achieved by an increasingly small group of investors. For the market assump-
tions of Figure 1, BC = 1.10 (from (9a), Bc = 1.41). If we increase oy ©OF
decrease the risk premium (A), the critical beta will decrease; e.g., for the

assumptions of Figure 1, if g, is increased -to 30 percent, BC = 0.76.

M
Let Bc* represent the fixed risk and diversification policy associated

with the long-term critical beta (BC) for single-geriod efficient portfolios

(p=1). BC' is the risk and diversification policy associated with maximizing

the long-term expected geometric mean. Therefore, to the extent that our

3SQurces of historical capital market data include Ibbotson and Sinque-
field [(19]) and Sharpe {37, Table 8.1].

4An important unresolved issue, of particular relevance for developing a
positive theory of long-term capital market behavior, is the definition of an
appropriate single-period. For this analysis the empirical issues concern the
existence of time periods where assumptions of intertemporal independence and
a single-period return generation process consistent with a single- (or multi-
factor SML, are justifiable.

1Ssignificant differences may occur over intermediate-length time periods.
In particular, assume that a year is composed of 12 (monthly) single-periods
for which the return generation assumptions hold. Under these conditions the
annual return distribution may possess a critical beta.
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approximations are valid, any other "essentially different" (varying or unvary-
ing) risk and diversification policy will almost surely have less growth rate
and terminal wealth than the BC* policy given a sufficiently long period of

time (Thorp [40, pp. 252-254)). Evaluating lim E(GN(R)) at BC' for p=1 provides
N—>=
an estimate of the almost sure maximum growth rate (see (10A) in the Appendix) .

For the values of the parameters in Figure 1, when p=1, the almost sure maximum
growth rate is approximately 12.7 percent.

Diversification takes on added importance with respect to mul tiperiod
portfolio return. The diversification-expected geometric mean relationship
makes it difficult for the typical portfolio manager with a less than perfectly
diversified portfolio to beat a perfectly diversified benchmark for a given
risk class. Over sufficiently long periods of time, mean wealth ratios over
the N-period investment horizon will be the same for two portfolios with equal
betas, but the median wealth ratio will be less for the less well diversified
portfolio.

As a normative theory of investment, the problem we have described is con-
cerned solely with managing multiperiod investment return. As a practical tool
of portfolio management, it suffers from the omission of such critical considera-
tions as accumulated wealth, consumption-investment decisions, and cashflow
requirements in each period. Monte Carlo simulation has been proposed as a tech-
nique for modeling the financial operation of a fund over time in order to develop
an appropriate long-term investment policy (Lorie and Hamilton (24, Ch. 15]).
This technique, however, is heir to the Samuelson-Merton objections of the
Hakansson criterion.

Except for two points on the Hakansson efficient frontier--zero variance
and maximum expected geometric mean return--or when returns in each period are
lognormally distributed (Hakansson and Miller [17]), constant (proportion) risk
policies do not lead to Hakansson efficient portfolios. Dynamic programming
computer solutions of Hakansson criterion optimal investment strategies in the
simple one risky and one riskless asset case show that an optimal intertemporal
investment strategy in beta may deviate substantially from a comparable fixed
beta strategy over the investment horizon (Michaud and Monahan [28]).16 There-
fore, optimal intertemporal investment policy with respect to the Hakansson
criterion is not, in general, constant over a multiperiod investment horizon.

Since the variance of the gecometric mean is asymptotically zero and the

16These computational solutions provide counter-examples to an assertion

by Hakansson [16, p. 174, A5]) concerning the one risky and one riskless asset
case.
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maximum mean is a decreasing function of the number of periods, the fixed in-
vestment policy mean-variance geométric mean efficient frontier may provide a
reasonable approximation of the Hakansson efficient frontier, especially for
investors with indefinite or very long time horizons. While small differences
in the growth rate may imply large differences in terminal wealth over long in-
vestment horizons, the benefits associated with Hakansson optimal solutions in
comparison with fixed investment policies may be mitigated by the likely in-
crease in transaction costs.

The theoretical results relating beta to long-term return and terminal
wealth may be useful as a positive theory of long-term capital market behavior.
The long-term return-beta data of Sharpe {38, p. 292) and Blume and Friend [8}-
is qualitatively consistent with the predicted relationship (l1). We note,
however, that the presence of a small, but significant, serial correlation in
Blume and Friend's data does contradict our assumption of intertemporal inde-
pendence. Also, the theoretical relationship (11) assumes a constant level of
diversification while the empirical portfolio return distributions will exhibit
a concave level of diversification as a function of beta with a maximum at or
near one.

To some, these empirical results may appear anomalous, since, under our
assumptions, average terminal wealth would appear to be a convex, not concave,
function of beta. This paradox is explainable from considerations of randem
sampling in highly right-skewed distributions. Assuming asymptotic properties
hold, we will show that the nature of the relationship between beta and the
average terminal wealth ratio is dependent on the number of observations in the
sample average.

Given intertemporal independence, the (theoretical) wealth ratio distribu-
tion is asymptotically lognormal, increasingly right-skewed, and such that the
mode, median, and mean follow in the order given. Assuming asymptotic proper-
ties hold, one observation from a 40-year wealth ratio distribution is most
likely to represent an estimate of the mode of the distribution. Under these
conditions, the long-term data in Blume and Friend [8, Table 4] and Sharpe are far
more likely to represent estimates near the median than the mean of terminal
wealth. Again, assuming asymptotic properties hold, the distribution of an eiqht;
sample average from a significantly right-skewed distribution is likely to be
right-skewed as well. Superimposed upon the original wealth ratio distribution,

the sample average distribution will have the same mean, but because of the cen-
tral limit theorem, the mode and median will shift to the right towards the mean.
An eight-sample average such as Blume and Friend [8, Table 1} will most likely

represent an estimate of the mode of the sample average distribution, which in
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this case is a point between the mode and mean in the original distribution and
may be near the median of the original distribution.

The foregoing analysis was not intended to provide corroboration of data
with theory. Additional, more appropriate, empirical data will be required.
Rather, its primary purpose was to demonstrate the statistical subtleties that
may exist in the interpretation of long-term return data and to show that the
existence of an empirical concave function of beta with the (average) terminal
wealth ratio does not rule out the existence of a monotonic increasing relation-
ship of risk with expected terminal wealth.

Probability estimates of geometric mean returns have often been derived
using Monte Carlo simulation (e.g., Williamson (41, p. 83]) and have been con-
sidered of practical importance in long-range investment planning and in evaluat-
ing the investment implications of various actuarial return assumptions. Our
analysis, however, lends itself to simple analytic estimates of geometric mean
probabilities. When N is large, equations (10) and (12) or (11) and (13) may
be used to form a standardized random variable which is approximately normally

distributed.

V. Summary and Conclusions

An intertemporally independent and stationary return generation process
consistent in each (discrete, uniform size) period with the SML of the CAPM, was
assumed. Under these conditions, approximations of the statistical characteris-
tics of the geometric mean distribution were derived that provide simple and con-
venient estimates of the multiperiod consequences of fixed single-period invest-
ment policy decisions on portfolic return. Within the range of validity of the
approximations, it was shown that: (a) the expected geometric mean is approxi-
mately a gquadratic function of beta:; (b) a critical becta (generally) exists
beyond which the expected growth rate diminishes while the variance increases:
and (c) increasing diversification increases thc expected growth rate while de-
creasing the variance.

The relationship of the geometric mean and terminal wealth distribution has
been exrlored. Because of the asymptotic properties of the geometric mean dis-
tribution, median terminal wecalth is approximatecly a concave function of beta
when N is large.

The results of the theoretical analysis of the effect of beta and diversi-
fication on the N-period terminal wealth distribution may be useful as a positive
theory of long-term capital market behavior. The assumptions used are implicit
in many empirical tests of return-beta linearity. The theoretical results sug-

gest that the long-term empirical relationship between beta and wealth ratios
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should be convex for the mean and concave for the median. The long-term wealth
ratio data of Blume and Friend {8]) and Sharpe (38) were examined and found con-
sistent with our analysis. Important open empirical issues remain, however,
including the definition of an appropriate single-period.

While the evaluation of the multiperiod consequences of fixed single-period
investment policy parameters based on the statistical characteristics of the N-
period terminal wealth or geometric mean return distribution may have intuitive
appeal as a normative investment theory, it is, nevertheless, subject to serious
reservations. The Samuelson-Merton objections to the geometric mean criterion
are fundamentally concerned with the fallacy of attending to the statistical
characteristics of the terminal wealth distribution as surrogates for the mean
of the utility of terminal wealth distribution. The investment problem which
we have considered is concerned solely with managing multiperiod portfolio
return and ignores critical considerations in investment management such as
accumulated wealth levels and cashflow requirements in each period. 1In addition,
fixed investment policies are generally suboptimal for investors with a geometric j
mean portfolio selection criterion. '

Nevertheless, the distribution of the portfolio growth rate is of interest
in many investment situations of practical importance. An effort to clarify
the long-term risk-return relationship has led to new tools for analyzing the
multiperiod consequences of fixed single-period investment decisions. If it
is used with an awareness of its limitations, many institutions and investors
may be supplied with a useful benchmark for evaluating the impact of single-
period investment policy parameters on their investment cbjectives. ;

For practical portfolio management, perhaps the most important aspects of |
this analysis are the awareness of the possible limitations of high-beta securi-
ties and portfolios, the critical role of market parameter assumptions, the role
of diversification for investors with long-range investment objectives, and the

limitations on growth rates of capital in financial markets. :
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APPENDIX
ALTERNATIVE APPROXIMATIONS OF THE GEOMETRIC MEAN

l. Using Taylor's formula for N variables, expanding (1) about the point u,
and ignoring terms of order three and higher or those with zero expectation, we

derive the approximation

G (R) = T - s2(1-1/N)/(2(1+n)) where s> = L(r.-u)2/N.
N o o 1

Then
(1) E(G(R)) = R +88-(1-1/N) B202 /(202 (1+R_+84))
N [ M [
. 2
(2A) V(G (R) = (1+(1—1/N)28205/(202(1+R°+BA)2))Bzc;/(o N)

and, assuming A>0,N > 1,

(3R) By 3 (148) ((1-20°a%/(a2 (1-1/m0) Y210,

From an analysis of the estimates (lA)-(3A), it follows that: (a) the
expected geometric mean as a function of beta may not be well approximated by
a quadratic, particularly for betas larger than the critical value; (b) the
variance of the geometric mean is dependent on single-period mean return; (c)
a critical beta may fail to exist if oM/A</—5 or for small N; and (d) the approxi-
mations for the critical beta and expected geometric mean are uniformly larger
and the variance of the geometric mean uniformly smaller than their correspond-
ing values in Section III. Note that the derivative of (1lA) as a function of
beta evaluated at B=0 is A. Therefore, assuming consideration of 8>0, the
approximation (1lA) implies that when the expected risk premium A<0, the effi-
cient frontier is a point and the optimal (varying or unvarying) investment
policy is not to put any money at risk.
2. An alternative approximation of E(GN(R)) will be derived which has the cor-
rect asymptotic limit (3), and which provides more accurate estimates of the
geometric mean characteristics when N is large. For r suitably constrained,
we write the binominal series expansion

1

(42) (].+r)N = 1+r/N-(1-1/N)rz/(ZN)+(1-1/N) (2-1/N)r3/(2~3N)-. .o

e 14+ (1/N) (- (£2/2) (1-1/N) +(£3/3) (1-1/2N) (1-1/N)-...)
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COTERAETE

= 1+ (1n(1+r))/N+é (N) /N
where ¢ (N)—>0 as N—>w,

From (4A) and (2), when N is large, the expected geometric mean can be

approximated by
(5A) : E(Gy (R)) = (1+E(ln(1+r)) /0 V-1

which has the limiting value (3) as N—>w,
Using the fact that

(6A) E(In(l+r) = 1n (1+p) - 02/(2(1+m) 2)

we can approximate the expected geometric mean when N is large, in terms of

the single~-period mean-variance of returns
. 2 2. .N
(73) E(GN(R)) = (l+{ln(l+u))/N=-0"/(2N(1+u) ")) -1.

From (3) and (6A) we may derive more accurate estimates of the long-term
(expected) geometric mean, the critical beta (assuming A>0), and the maximum
long-term growth rate, E*, which is achievable with probability one, given the
single-period market assumptions:

2.2 2 2 .
-8 cM/(Zo (1+R°+BA) ),

(8A) LimE (G (R)) = (1+R_+BA)e 1

N
. 2 _ .22 /2 22 32
(9a) Bc (1+R°) (cm 207" - oY O - 407p") /(2470 7)

o2-a8%) %/ 0% _

: - 2 - 2 2, -{o -
(10a) E* (1+R°)0M(oM Ty 407)/(280%)e M 1.

Note that BC in (9A) exists only if GM > 24 and is always, and often substan-

tially, larger than the corresponding estimate in (14).
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