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Abstract 
 

The when-to-trade decision is a critical yet neglected component of modern asset 
management.  Typical rebalancing rules are based on suboptimal heuristics.  Rebalancing is 
necessarily a statistical similarity test between current and proposed optimal portfolios.  
Available tests ignore many real world portfolio management considerations.  The first 
practical test for mean-variance optimality, the Michaud rebalancing rule, ignored the 
likelihood of information overlap in the construction of optimal and current portfolios.  
We describe two new algorithms that address overlapping data in the Michaud test and 
give examples.  The method allows large-scale automatable non-calendar based portfolio 
monitoring and quadratic programming extensions beyond portfolio management.   
 

 
Practitioner Summary 

 
The when-to-trade decision is a critical yet neglected component of modern asset 
management.  The need-to-trade decision is typically based on suboptimal heuristic rules.  
Until relatively recently no effective decision rule has existed for deciding whether a 
currently held portfolio has aged sufficiently to make trading desirable.  The fundamental 
problem is that portfolio managers and financial theoreticians persist in ignoring the 
statistical nature of asset management and the impact of estimation error on effective 
decision making.  The rebalancing decision is necessarily a statistical similarity test 
between the current drifted portfolio and a proposed new optimal.  Many rebalancing 
rules in use have had little theoretical or statistical foundation and often lead to trading in 
noise or ineffectively using useful information.  While statistical similarity tests are 
available in the financial literature none treat the real world portfolio management 
problem that requires inequality constraints, targeted risk portfolios, trading costs, and 
asset manager style customization.  Inclusion of these necessary features requires 
compute-intensive resampling methods that overcome the limitations of familiar null 
distributions.  The first practical similarity test for mean-variance optimality is the Michaud 
rebalancing rule.  However, the original procedure ignored an often important 
consideration in that much of the information used to construct the current portfolio 
may be implicitly or explicitly included in the new optimal.  This partial input match results 
in an overly conservative Michaud rebalance signal.  We develop new algorithms that 
address overlapping data in the Michaud test.  The new distribution defines a critical range 
for the Michaud rule and extends its applicability and power.  We describe two 
procedures and give examples.  The method allows large-scale automatable non-calendar 
based portfolio monitoring. The procedure is generalizable as a statistical similarity rule 
for quadratic programming contexts with potential applications well beyond portfolio 
management.   
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Introduction 
 
Modern asset management requires effective portfolio monitoring.  The rebalancing 
decision is necessarily a statistical similarity test between the current drifted portfolio and 
a proposed new optimal.  However, portfolio rebalancing in practice is typically based on 
suboptimal heuristics that often lead to trading in noise or ineffectively using useful 
information.  Many managers routinely trade on a fixed calendar basis.  Others estimate 
hurdle rates that ignore the portfolio context and statistical estimation issues (e.g., 
Masters 2003).  Other approaches include trade optimality (Dybvig 2005), jumps in prices 
(Liu et al 2002), trading frequency (Leibowitz and Bova 2010), trading strategies (Perold and 
Sharpe 1989), and dynamic programming (Sun et al 2006, Markowitz and van Dijk 2003).  
None are based on portfolio statistical similarity. 
 
Statistically based portfolio similarity procedures have been given by Shanken (1985), 
Jobson and Korkie (1985), and Jobson (1991) among others.  However, the few statistical 
approaches require unrealistic investment assumptions in order to ensure familiar null 
distributions.  Real-world portfolio management requires linear inequality constraints on 
portfolio weights, targeted risk levels usually on some variation of the Markowitz (1959) 
mean-variance (MV) efficient frontier, trading costs, and asset manager style 
customization.2  Practical decision rules require compute-intensive resampling methods to 
create optimality tests which would be intractable using traditional analytical techniques. 
 
The first practical procedure for statistical similarity is the Michaud rebalancing rule 
(Michaud 1998, extended in Michaud and Michaud 2008a, b).  It measures the statistical 
similarity of the current portfolio relative to an associated MV risk targeted portfolio on 
the Resampled Efficient Frontier™ (REF).3,4  In Michaud optimality, each portfolio on the REF 
is an average of properly associated resampled MV optimal portfolios.  Michaud 
rebalancing compares the tracking error of a given portfolio to the target optimal relative 
to the distribution of tracking errors associated with the target optimal created by the 

                                                 
2 Markowitz (2005) demonstrates the critical importance of realistic linear inequality as well as equality 
constraints on financial theory as well as applications.   
3 Michaud’s REF is a generalization of the linear equality and inequality constrained Markowitz MV efficient 
frontier that includes estimation error in inputs and resampling to define portfolio optimality (Michaud and 
Michaud (2008a, Ch. 6, 2008b).  The Michaud optimization and rebalancing test are protected by U.S. 
patents and patents pending.   
4 Michaud (and Markowitz) efficiency has been critiqued as inconsistent with the rationality axioms of the 
von Neumann and Morgenstern (1944) Expected Utility Hypothesis (EUH).  However the EUH is itself subject 
to numerous serious critiques.  As a consistent formal axiom system, EUH is neither consistent with 
observed investor behavior (Allais 1953, Kahneman and Tversky 1979), unique (Quiggin 1993, Luce 2000), nor 
complete (Gödel 1931, Church 1936, Turing 1936), and cannot claim definitive characterization of rational 
decision making under uncertainty.  An alternative rational framework of investor behavior based on 
evolutionary principles (Farmer and Lo 1999, Lo 2004) can be viewed as fundamentally consistent with 
Michaud optimality.  REF optimal portfolios properly defined enhance the likelihood of investor prosperity 
or survival in controlled statistical experiments relative to classical MV optimization (Michaud 1998, Ch. 6, 
Markowitz and Usmen 2003, Michaud and Michaud 2008a, Chs. 6, 9) in the investment period.  In our case 
psychological hypotheses of species behavior or ecology are unnecessary.  In practical terms, REF optimality 
is simply a convenient framework for constructing enhanced linear constrained MV efficient portfolios that 
address estimation error uncertainty endemic in applied finance and asset management.   
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resampling process under the statistical similarity null hypothesis.5  A high percentile, or 
rebalance probability, indicates that the current portfolio is statistically far from target 
optimal and that trading is likely to be desirable.  The threshold percentile level depends 
on the manager’s risk aversion; i.e., whether or not the possibility of trading in noise is less 
desirable than ineffectively using investment information.  The trading decision depends 
on the level of confidence associated with the manager’s information, trading costs, and 
numerous additional investment and statistical issues.6   

 
A critical consideration in portfolio monitoring is that much of the information used to 
construct the current portfolio may also be implicitly or explicitly reused when defining 
the new optimal.  This partial input match results in an overly conservative Michaud 
rebalance signal.  A portfolio similarity test that properly uses overlapping information 
corrects the statistical significance of the percentile measure while often recommending 
trading earlier or later than any fixed calendar timetable.   
 
We develop new critical values that are conditional on a specified amount of common 
information in the Michaud test.  These new thresholds define the appropriate critical 
ranges for the Michaud rule and boost its power.  We describe two procedures, one for 
purely historical data and the other for the more common case of managed risk-return 
estimates.7  The algorithms are illustrated with examples.  We discuss customization of the 
monitoring rule in the context of manager, investor, and marketing imperatives.  The 
method allows large-scale automatable non-calendar based monitoring. More generally 
the procedure provides a rigorous statistical context for quadratic programming 
estimation with potential applications beyond portfolio management.   
 
The procedures we describe are addressed to the need-to-trade, not how-to-trade, 
decision.  How-to-trade often requires consideration of many market, investment, and 
client factors and is beyond the scope of this report.  We note that the trade-to portfolio 
may often be an intermediary point between current and target optimal.   
 
A mathematical description of the portfolio monitoring framework is presented in Section 
I.  A computational procedure adjusting Michaud’s rebalancing test for overlapping data is 
given in Section II assuming optimization inputs are based purely on historical data.  Later 
discussion for implementation in the more practical case of managed inputs is presented.  
Section III illustrates the procedures with applications to asset allocation.  Section IV 
discusses considerations of using the rule in a practical monitoring scenario. Section V 
provides some generalizations, a summary and some conclusions.   
 
I.  Monitoring Framework 
 
We begin by placing the REF, rebalance probability, and monitoring problem within a 
suitable mathematical framework.  We index time periods starting with t=0 at the last 

                                                 
5 Tracking error may be replaced by other measures of portfolio dissimilarity.  For example, a utility-
function-based metric could be used.  We use tracking error as the most straightforward of these measures. 
6 We will discuss some of these issues further below.   
7 U.S. patent pending.   
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rebalance.  Suppose information Xt is available at time t and is statistically modeled with 
density f(X|θ).8  For the examples shown here θ represents the parameters {𝜇,𝛴} of a 
multivariate normal model, although it need not be limited thus.  The best available 
information for θ at time t comes from the posterior density f(θ|Xt), and the model for 
future observations X* is the posterior predictive distribution with density f(X*|Xt).  These 
two posterior distributions capture the manager’s full set of information.9  The REF 
optimal portfolio Pt at time t is the posterior expectation of a selected Markowitz 
Efficient portfolio10 PEF(θ) for known inputs θ. This is defined as  
 

Pt = ∫𝑃𝐸𝐹(𝜃)𝑓(𝜃|𝑋𝑡)𝑑𝜃. 
 
Implicit in this definition is a method of selecting portfolios along the linear equality and 
inequality constrained efficient frontier for a given θ.  At a particular value of the 
parameters {𝜇,𝛴} , portfolios can be chosen to maximize expected utility or by another 
method, but we refer to the set of portfolios chosen by any specific method as an 
associated set of MV optimal portfolios.  Certain association schemes outperform others 
on simulated out-of-sample performance with regard to many typical and exemplary 
datasets taken from contemporary capital markets.11 The best-performing association 
schemes should be preferred in practice.  In practice the REF optimal portfolio is 
computed as the average of properly associated simulated MV efficient portfolios. 
 
In order to quantify the rebalancing imperative, we must have a way to score suboptimal 
portfolios.  Let 𝒟(P1,P2) be a discrepancy function between portfolios P1 and P2.12  Then 
the predictive distribution  f(X*|Xt) implies a probability distribution on  D(P*,Pt) where P* 
is the REF evaluated on a random draw from  f(X*|Xt).  The Michaud rebalance probability 
R(t) is defined as the cumulative distribution function of this implied distribution 
evaluated at the observed discrepancy D(P,Pt) between current drifted portfolio P and 
optimal Pt, i. e.  
 

𝑅(𝑡) =  Pr (𝒟(𝑃∗,𝑃𝑡) < 𝒟(𝑃,𝑃𝑡)).13 
 

                                                 
8 Return distributions are well known to be nonstationary.  However, for many practical situations there is 
not enough data to support estimation of a more complex probability model, so the more parsimonious  
stationary model is preferred, and the input data is limited to a relevant time period to the analysis or 
weighted to decrease in importance for less relevant time periods.  See Esch (2010) for further discussion.  
9 We use the traditional notations for Bayesian analysis but intentionally leave model choice at the 
discretion of the manager.  Many types of information can be included in the analysis. 
10 Managers typically use linear inequality constraints when defining optimality in any time period. This 
practice is one of the main reasons analytical calculation of the rebalance test is intractable, and Monte 
Carlo methods must be used.  
11 See Michaud and Michaud (2008a, Ch. 6) and Esch(2012). 
12 The Michaud procedures by default use tracking error, i, e. relative variance, as the discrepancy function, 
but any suitable distance metric can be substituted.  Any well-defined norm on portfolio space induces a 
discrepancy function when evaluated on the difference of portfolios. 
13 The Michaud procedures use the empirical form of the distribution of 𝒟(P*,Pt) obtained by simulation.  
This is an approximation of the true continuous distribution which has no closed form for general 
inequality-constrained optimization problems. 
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An important practical limitation on R(t), the central problem which this paper addresses, 
is that much of the information in X0 is also part of Xt.  This information overlap creates a 
downward bias in the calculation of 𝒟(P,Pt) when it is measured against independent 
draws of D(P*,Pt) based on the predictive distribution.  The method presented in Section 
2 will overcome this limitation by including the overlapping information in the simulation 
process. 
 
To mathematically define the central problem and solution of this paper we must first 
introduce parameters L, k, and T.  The parameter L defines the nominal critical value of 
the rebalance test, or the percentage of the distribution of 𝒟(P*,Pt) which the manager 
wishes not to exceed.  The parameter k defines the normal rebalancing period for a given 
manager.  For example, a value manager may anticipate the need to rebalance every 
twelve months while more active managers may anticipate rebalancing more frequently.  
The parameter T represents the number of total independent observations in the 
information set used to define optimality.  Portfolios are optimized from many 
information sources and only expected return and covariance matrices are typically 
available, so both T and k can be heuristically adjusted to match the investor's 
preferences.  
 
The decision to trade is often a function of accumulated new data.  Usually the 
optimization to calculate Pt at time t > 0 uses much of the same information used to 
construct P.  Due to overlapping data, rebalance probabilities may appear quite small, yet 
appropriately signal a need to trade in spite of being substantially less than the nominal 
threshold L.   
 
Our overlap-adjusted threshold for the Michaud rebalance test is denoted as CL(k).  We 
define CL(k) as follows: let Xt be composed of components Xt∩0 and Xt\0, the intersection 
and set difference of Xt with X0, respectively. Then CL(k) is defined as the Lth percentile 
of the distribution of R(t) induced by replacing Xt\0 with a random draw from its 
predictive distribution within the calculation of Pt.  
 
The next section describes general computational procedures for calculating CL(k).  CL(k) 
has limit L for increasing k when P and Pt are associated portfolios on the REF.  As t 
increases, R(t) increases and crosses the critical probability CL(k) at some time t.  In the 
context of overlapping data in the optimization inputs, CL(k) is the lower limit of a more 
suitable range for interpreting a rebalance statistic as a positive rebalance signal at 
confidence level L.  CL(k) provides a rigorous statistical benchmark for a given data set 
and parameters L and k for determining whether trading is desirable at a given time 
period. 
 
II.  Computing CL(k) 
 
We address two cases for calculating CL(k).  The first, described in detail, assumes that 
the MV inputs associated with both P and Pt and for computing REF portfolio optimality 
are defined entirely by prior historical returns.  This case is not very practical but useful in 
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clarifying the main features of the monitoring computation.  The second case generalizes 
the framework for many investment processes in practice.   
 
A.  MV optimization inputs from T periods of historical returns.   
Return series X0 = [x1, …, xT] is used to calculate optimization inputs associated with P.  
A sequence of simulated optimization inputs are created for time t=k, also based on T 
historical time periods.  The following algorithm uses a partial resampling framework to 
simulate overlapping datasets and obtain the empirical distribution of R(t).  CL(k) is 
computed for the given data set and parameters k, T, L, and Z, where Z is the number of 
Monte Carlo simulations of rebalance probabilities.  The definition of a REF optimal 
portfolio at time t also requires an assumption, called the Forecast Confidence™ (FC) 
parameter that defines the number of simulated observations used in computing 
simulated mean-variance efficient frontiers in the portfolio averaging process.  While the 
default assumption in this report is to assume FC=T, we discuss alternatives and 
applications later in the text.14   
   
Algorithm A: Computing CL(k) from known historical returns15 
 

• Compute P0, the optimal target portfolio at time 0, from X0. 
• For i in {1, ... ,Z}: 

o Replace k randomly selected returns16 in X0 with k returns simulated from 
the predictive distribution  f(X*|Xt) and compute the optimal portfolio Pk

i 
o Compute the rebalance probability Ri(k) of P0 with respect to Pk

i 
• CL(k) is Lth quantile of Ri(k) 

 
 
B.  General MV optimization input estimation.   
Few, if any, asset managers rely solely on historical returns for computing MV estimates 
for actual investment.  Risk-return estimates generally reflect information from a wide 
variety of sources and aspects of the investment process.17  REF optimized portfolios P0 
and Pt are based directly on inputs calculated at times 0 and t.  In this context there is no 
explicit value of T to define the number of draws from the input distribution; 
consequently its value must be assumed.  For this case, T represents the manager’s 

                                                 
14 The patented FC procedure can be conveniently formulated as an index with values from one to ten to 
heuristically reflect increasing certainty in risk-return point estimates independent of T.  FC can be 
associated with numerous practical investment management issues.  See further discussion in Michaud and 
Michaud (2008a,b).   
15 Chaves (2010) suggests a computationally efficient approximation to our algorithm.  This approach 
modifies the calculation of R(t) but has some important limitations.  In our method, each scenario has its 
own updated posterior and discrepancy function. Simulating separate rebalance tests provides a more 
realistic calibration to overlapping data, as well as providing additional flexibility with settings of various 
parameters of the optimization process, as detailed in Section 5.  Managers may also need flexibility to use 
different predictive distributions conditioned on different information sets in the simulation process from 
the rebalance test so as not to reflect unusual events in the contrafactual simulations. 
16 See Davison and Hinkley (1997) for discussions and generalizations on simulation schemes. 
17 In practice, asset managers use many techniques for modifying MV inputs and enhancing their forecast 
value.  See Michaud and Michaud (2008a, Chs. 8 and 11) for further discussion and references.   
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assumption of the information cycle or information level associated with the number of 
draws of independent, identically distributed (iid) returns at time t.  The adjusted critical 
values CL(k) in this algorithm (B) are computed by applying Algorithm A to simulated 
datasets in place of the observed data X0.18  Since some information is lost in reducing 
the dataset to optimization inputs, the two analyses may produce somewhat different 
results.  We have indeed observed variability in the results from the above algorithm on 
multiple datasets simulated from a single set of inputs, as shown in Figure 1. 
 
III.  Examples 
 
We provide a comprehensive illustration of the new procedure with respect to a data set 
used in prior REF optimization studies.  This data set represents an asset allocation case 
for eight capital market indices as described in Michaud (1998, Ch. 2)19.  The main results 
are shown as distribution plots and percentile curves in Figures 1 and 2, and detailed results 
of a few modifications to the inputs appear in the appendix. 
   
The Michaud (1998, Ch.2) data consists of 18 years of monthly historical total returns for 
eight capital market indices, six equities and 2 fixed income, from January 1978 to 
December 1995.  For our main analysis we use T=120 monthly periods; we also treat T=60 
in the appendix.  Unless indicated we also assume FC = T.  Pt for this case would be the 
REF optimized portfolio estimated at t monthly periods subsequent to December 1990. 
For example, if t = 12, then Pt is the REF optimized portfolio at December 1991 calculated 
using the previous 120 months of data.  Adjusted critical values CL(k) are computed for 
values of k from 1 to 24.  
 
Figures 1 and 2 display two different presentations of the critical rebalance probability as a 
function of k for the middle portfolio on the REF based on ten years of monthly historical 
returns for the indicated confidence levels.20  The middle of the box plots in Figure 1 
represent the 50% value of L and the extremes the 25% and 75% level, for CL(k) for each 
value of k for the indicated cases.  The display also shows that the need-to-trade 
probability required with a one-year rebalance cycle (k = 12) at the 90% confidence level 
for T=120 is roughly 20%.  Figure 2 simply traces CL(k) as a function of k for different 
levels of L.  Theoretically CL(k) is monotone increasing as a function of k; Monte Carlo 

                                                 
18 The computational algorithm and further technical details are given in Michaud et al (2010). 
19 We used the same data set that has been used in key articles written on Michaud optimization.  These 
include Michaud (1998), Michaud and Michaud (2008a), Markowitz and Usmen (2003), Harvey, Leichty, and 
Leichty (2008), and Michaud and Michaud (2008c).   This data set is sufficiently complex to illustrate our new 
methods.  Complete tables of means, standard deviations, correlations, and many efficient frontier 
portfolios are available in the above references.  Our qualitative results hold for a wide range of datasets.   
20 Due to compute-efficiency and statistical stability considerations, the return-rank algorithm is the 
recommended procedure in Michaud (1998), Michaud and Michaud (2008a,b) for computing REF optimal 
portfolios.  Return ranks identify increasing risk levels of portfolios on the REF.  As in Michaud and Michaud 
(2008a,b), we compute 51 return-rank portfolios, from low to high, on the REF.  We identify portfolio 26 as 
the middle portfolio on the REF.  There is no loss in generality if quadratic utility, stock/bond ratios, tracking 
error relative to a benchmark, or other procedures are used to identify different risk levels on the REF.  As 
we will show, we have found that the statistical character of CL(k) may not vary much for different risk levels 
across the frontier.   
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estimation error is responsible for deviations.21  In effect, CL(k) is simply a recalibration of 
the need-to-trade probability for given L.   
 
The simulated rebalance probabilities shown in Figures 1 and 2 have several noteworthy 
properties.  Both figures vividly demonstrate the impact of overlapping data on the 
Michaud rebalancing rule.  Even after a year, the critical probability required for trading to 
optimal is far less than confidence level L.  Figure 1 also shows that the critical probability, 
or benchmark for measuring optimality relative to estimation error and assumptions, has 
less variation in Algorithm A than B due to more specificity in starting assumptions.   
 

 
Figure 1: Michaud (1998) data. Michaud rebalance probabilities are simulated, replacing k months of 120 in each 

simulation, with T0 = December 1990.  Each combination of parameters was run with 1000 simulations. Boxplots 
(Tukey 1977) show distribution summaries of simulated Michaud rebalance probabilities for values of k from 1 to 24. 
Algorithms A and B are juxtaposed for each value of k. The three horizontal rules in the boxes mark the three 
quartiles of the distribution, and the dotted line whiskers extend to 1.5 times the interquartile range, or the limit of 
the data if it is closer. Values beyond the whiskers are marked with “+" symbols. 

The appendix provides further insights into the statistical character of the adjusted critical 
values CL(k).  Rather surprisingly, there is little variation across the different risk levels of 
the efficient frontier.  Although the rebalance tests are comparing greater tracking errors 
for greater target risk levels on the frontier, the relative positions of the simulated aged 
portfolios among the simulated statistically equivalent portfolios remains remarkably 
consistent for otherwise equivalent cases.  Variation of the number of simulated periods 
of overlap, via the parameter T changes the rate at which the CL(k) converges to its 
limiting value as k increases. The overlapping data effect vanishes more quickly for 
increasing k as T increases.  
 
Other changes in input can affect the limiting distribution to which the simulations 
converge. Changing target rank between times 0 and t or using a number of FC periods 
different from T will affect the value of CL(k). Details of these effects appear in the 
appendix.  

                                                 
21 Calculating CL(k) for many values of k is particularly computationally intensive.  In applications managers 
may be interested in CL(k) at only one value of k.  For our purposes, the computation provides a 
comprehensive illustration of the procedure.   
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Figure 2: CL(k) as a function of k from the Algorithm B data in Figure 1.  Here we show the 25th, 50th, 75th, and 90th 

percentiles of the distributions. 

IV. Implementing the Michaud monitoring rule 
 
Implementation of the monitoring rule requires appropriate settings of the parameters.  
Proper tuning of L, FC, k, and T allows customization of the procedure relative to a 
manager’s investment process, client objectives, outlook, and other considerations. 
 
The parameter L quantifies trading risk aversion.  A large value of L reduces trading 
frequency by avoiding the danger of trading in noise but may also ignore performance 
opportunities.  Alternatively, a small L increases trading frequency by more closely 
tracking to target but may result in statistically ineffective trades.  A default value of L=.5 
may often be useful. 
 
The appropriate value of L also depends on a manager’s assessment of the level of 
information in risk-return estimates at given time t, which may vary depending on various 
investment issues.  These considerations are also reflected in the choice of the forward 
looking FC parameter which is embedded within the posterior and posterior predictive 
distributions f(θ|Xt) and  f(X|Xt).  Higher FC levels create less dispersion in the resampled 
datasets, and generally more active use of investment information in the REF portfolios.  
The choice of FC may interact with L.  For example, a high FC value may be associated 
with a lower level of L and vice versa.  This is because the manager may decide that the 
information is very reliable and tracking to optimality is more important than the 
likelihood of trading ineffectively.   
 
Setting the value of T is straightforward when the only source of information is historical 
data as in algorithm A.  However, because risk-return estimates are typically managed, 
practical application will often require Algorithm B and an estimate of T.  In this case T 
does not necessarily reflect a historical time period but more appropriately the 
denominator in the fraction k/T of new information in the analysis.  Alternatively, T 
reflects the time it takes for information to completely cycle out of the analysis.  As T 
becomes smaller, the rebalancing threshold CL(k) will increase more rapidly as k increases.   
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Once parameters have been set and CL(k) computed, the implementation of the 
monitoring rule is straightforward.  The manager calculates the Michaud rebalance test 
R(t) for the monitored portfolio P relative to the new REF optimal Pt and compares the 
value to CL(k). Rebalance probabilities greater than CL(k) indicate that rebalancing may 
be desirable.  Note that CL(k) is simply a new scale for L.  It may often be convenient to 
recalibrate the CL(k) distribution onto the L scale.  The parameters defining the 
monitoring rule provide interesting opportunities to dynamically manage the trading 
decision in real time.22   
 
In applications the set of monitored portfolios may differ by risk level.  The Michaud 
monitoring rule can be accommodated by associating each portfolio with one of several 
pre-defined target REF portfolios. Once the critical probabilities are computed, the 
monitoring rule requires only a table lookup.  Consequently automated customizable 
portfolio monitoring may be practical even for very large-scale applications.   
 
V.  Summary and Extensions 
 
The when-to-trade decision is a critical function of professional asset management.  
Trading on noise is costly and unproductive but trading too little uses investment 
information suboptimally.  Trading effectiveness impacts investment performance and 
manager competitiveness.  At a macro level, trading effectiveness affects efficient 
allocation of capital in global markets.   
 
Yet current practice is largely characterized by suboptimal calendar rules and simple point 
estimate heuristics.  Portfolio monitoring is essentially a statistical test of the similarity of 
two portfolios.  Until recently, statistical similarity tests required unrealistic assumptions.  
The Michaud rebalancing test addressed practical portfolio construction and investment 
management considerations but is overly conservative if the two portfolios are based on 
overlapping data.  We describe two new algorithms for properly determining when 
trading is statistically desirable with overlapping information.   
 
The procedures we present have a number of generalizations.  In particular there is no 
need for the target portfolio to reside on the REF or any MV efficient frontier.  Since the 
ability to resample datasets enables computation of statistical equivalence regions, any 
portfolio calculation method, along with a measure of portfolio similarity, can produce a 
rebalance test statistic which could be calibrated by the procedure in this paper. Note 
also that θ can parameterize any return distribution, not just mean-variance based.   
 
While our methods and illustrations are inspired and guided by the demand characteristics 
of modern asset management in practice, they are not limited to this context.  The 
procedures are applicable to a wide variety of process monitoring applications where 
inequality or other constraints require computational methods for estimation and inputs 
include overlapping data.  In particular the procedures can be used for data analysis 
monitoring applications that uses multivariate linear regression with overlapping data and 

                                                 
22 For example, the VIX index may indicate changes in market volatility that may impact need-to-trade 
decisions.   
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linear inequality constraints.  More generally, the procedure may be viewed as providing a 
statistical context for many quadratic programming applications.23  
 
Our portfolio monitoring framework presents novel concepts and challenges for 
managers and investors.  However, the effort to quantify the monitoring decision with 
properly defined parameters may be helpful in clarifying and controlling investment 
process and intuition.  Investors may find such a manager likely to have enhanced 
performance over traditional ones.  The potential for adding investment value and 
enhancing reliability seems a challenge worth the effort.   
 
  

                                                 
23 Theil (1971, pp. 347-54) notes that analysts have or should have a view of the range of values of coefficients 
in multivariate linear regression estimation that should be included in the procedure.  He also notes that 
quadratic programming may have important applications in proper data analysis if a statistical basis for the 
procedure were available.   
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Appendix 
Detailed results for various modifications to the inputs 

 
Consistency across the Frontier 
 
Figure 3 displays the simulations of Figure 1 for low to high risk on the entire efficient 
frontier broken out by single values of k on each panel.24  Although there is a slight 
increase in the probabilities needed for trading at the lower and upper ends of the 
efficient frontier, the distribution of simulated probabilities is remarkably consistent 
across different risk levels of the frontier.  Most if not all of our experimentation has 
shown the same result: the target risk level on the frontier does not greatly affect the 
distribution of simulated rebalance probabilities, and hence CL(k), despite the wide 
variation in the distribution of tracking errors used to calculate each rebalance test. 
 
Number of Input Time Periods  
 
Figure 4 displays an analysis identical to Figure 1 except that it is based on T=60 monthly 
historical returns rather than 120.  Comparison of the two figures demonstrates that an 
increase in estimation error in risk-return estimates significantly increases the critical 
probability required for trading to optimal.  This increase occurs because each additional 
simulated return as k is incremented has twice the information relative to the whole data 
set.  Note that even in this case, the critical probability is small relative to confidence level 
at short monitoring periods reflecting the dominant effect of overlapping data.  On the 
other hand, the overlapping data effect tends to diminish rapidly much beyond a year and 
at k=24 the distribution of rebalance probabilities is much closer to uniform than in the 
T=120 case.   
 
  

                                                 
24 As discussed earlier, the results are computed from low to high risk computed from the return-rank 
algorithm for 51 points on the frontier. 
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Figure 3: The Algorithm B simulations are shown for given k across the entire range of frontier risk levels in each panel.  

This Chart shows surprisingly little variation across different risk levels in the rebalance statistic, except at the ends 
of the frontier.  There is variation across the frontier within resampled datasets, as can be seen by the paths of 
some outliers, but the aggregated simulations occupy a remarkably stable range across the frontier.  

Non-associated portfolios at t=0 and t=k 
 
Risk preferences may change over time.  In such cases target portfolio risk may vary from 
one period to another, and the analyst would choose a different set of associated 
portfolios to average when computing the REF.  Changes in portfolio risk alone are often 
enough to indicate that rebalancing may be desirable.  When a different frontier point is 
targeted, the analyst should use the value of CL(k) computed such that P0 and Pk are 
associated with Pt.  This applies a uniformly strict standard to the rebalance test 
regardless of previous status.  
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Figure 4: Boxplots for Michaud (1998) data, Algorithms A and B, T=60.  Note the much more rapid convergence of the 

distributions towards uniform coverage of the [0,1] interval. 

 
While not useful as strict criteria for rebalancing, the distributions of overlap-simulated 
rebalance probabilities from different parts of the efficient frontier are useful in 
understanding the behavior of the rebalance test and how changing target risk affects the 
need to rebalance.  The upper panel of Figure 5 illustrates the distributions of rebalance 
probabilities for lower target risk Pk relative to a middle REF optimized portfolio P0.25  For 
comparison, the lower panel of Figure 5 shows the identical analysis when both P0 and Pk 
are middle target risk, and is identical to the Algorithm B data of Figure 1.  In this figure the 
distribution of rebalance probabilities is shifted towards greater values in the upper panel.  
When target portfolio risks are different the Lth quantile of the distribution of overlap-
simulated rebalance probabilities in fact tends toward a value greater than L as k 
approaches T.  Only a small probability mass of the distributions in the upper panel of 
Figure 5 occur below the medians in the lower panel.  This fact is consistent with the 
intuition that changing portfolio target risk alone often requires rebalancing. 
 
Variations in FC 
 
In prior examples it was convenient to assume that the T and FC periods are the same.  
However, in applications, each parameter has a separate role to play in defining the 
monitoring process.  Their roles are clearest when considering historical data as in 
algorithm A.  In this case T is the number of periods in the data set while FC is the 
number of resampling periods representing the investor’s level of certainty in investment 
information.  While T is fixed FC may vary depending on market outlook, manager style, 
investment horizon, and other considerations.   
 
When T and FC differ, CL(k) no longer necessarily converges to L as k increases.  This is 
because the two parameters imply different amounts of information and levels of 
dispersion about the target portfolio.  The net effect is that CL(k) tends toward values 
smaller or larger than L depending on whether the number of FC resampling periods is 

                                                 
25 The lower risk target optimal portfolio relative to the middle portfolio is computed for rank 16 of 51 
portfolios with equally-spaced expected returns.   
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less or greater than T, respectively.  Figure 6 shows the effect of changing the FC window 
from 120 to 60 time periods with T fixed at 120 time periods.  Since 120 time periods yield 
more information and less dispersion of simulated portfolios than 60 periods, the 
simulated rebalance test statistics are small and CL(k) converges to relatively small values. 
 

 
Figure 5: Algorithm B, lower target risk level.  The data in panel 2 exactly matches the algorithm B data from Figure 1. 
When the target risk differs from initial, the simulated rebalance statistics are typically greater than when they match, 
and converge to a nonuniform distribution as k increases. The boxplots for large k in the first panel can be seen to have 
quartiles at values greater than 25%, 50%, and 75%, the quartiles of the uniform distribution. 
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Figure 6: An illustration of the effect of decoupling the Forecast Confidence™ from the total information parameter T 

used in computing CL(k). The data are taken from Michaud (1998), using 120 months of data. The left series of 
boxplots show the same (Algorithm B) data of in Figure 1, for which both FC and total information T were set to 
120 time periods.  The right series shows the effect of changing the FC to 60 time periods. In this case CL(k) is 
converging to values less than L since replacing a set of 120 observations results in less dispersion about the 
optimal portfolio than does replacing only 60 observations.  
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